项目名称: 量子点与线粒体相互作用热动力学及其机制

项目编号: No.21303126

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 蒋风雷

作者单位: 武汉大学

项目金额: 25万元

中文摘要: 量子点具有许多独特和优异的光学性质,其在生物医学等领域具有广阔的应用前景,受到国际学术界广泛的关注。量子点生物效应及其毒理学研究成为近年来的研究热点之一。在生物个体、细胞、生物大分子等水平的纳米生物效应已经有了一些报道,但是在亚细胞层次上纳米生物效应的研究仍处于起步阶段。本研究将以线粒体为主要研究对象,采用微量热、显微、光谱、电化学、生化分析、呼吸耗氧等多种研究手段和技术相结合,建立量子点与线粒体相互作用的热动力学模型,获取相关热动力学参数,从线粒体形态、呼吸功能、膜结构、膜渗透性转换、膜流动性、线粒体酶活性等方面,研究不同量子点对线粒体的生物效应及其作用机制。深入认识量子点对生命代谢动态过程的影响途径及其在亚细胞层面的作用机制,进一步揭示和认识量子点参与细胞动态化学过程中的影响机制。本研究将为量子点的高效制备、应用及生物安全性评价提供理论依据,促进学科在高水平、深层次上的交叉渗透。

中文关键词: 量子点;线粒体;热动力学;生物效应;机制

英文摘要: Quantum dots (QDs) have unique optical properties and a lot of biomedical applications, but its biological effect and toxicity are still not clearly understood, especially on the level of cell organelle. In this project, CdSe/ZnS and CdTe quantum dots will be selected as the main system, and many research techniques, such as microcalorimetry, microscopy, spectroscopy, electrochemistry and bioanalysis etc., will be combined to investigate the interaction of QDs and mitochondria. Mitochondria are the most important cell organelles and can be regarded as the target of QDs toxicity. With the help of thermokinetics, the biological effect and mechanism of different QDs will be investigated from structure and function on the level of mitochondria. The thermokinetic model of the effect of QDs on living metabolism will be established, and a lot of thermokinetic properties will be obtained. Also, the mitochondrial conformation, respiration function, membrane structure, membrane penetration transition, membrane fluidity and enzyme activity will be investigated. The biological effect mechanism of different QDs and the relationship between QDs structure and interaction thermokinetic parameters will be disclosed. It will promote us deeply understand the process of the effect of QDs on living dynamic things and the interaction

英文关键词: quantum dots;mitochondria;thermokinetics;biological effect;mechanism

成为VIP会员查看完整内容
0

相关内容

【清华大学鲁继文副教授】无监督视觉表征学习
专知会员服务
26+阅读 · 2022年3月17日
智能无人集群系统发展白皮书
专知会员服务
295+阅读 · 2021年12月20日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
混合增强视觉认知架构及其关键技术进展
专知会员服务
40+阅读 · 2021年11月20日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
67+阅读 · 2020年10月17日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
113+阅读 · 2020年9月11日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Fast Circular Pattern Matching
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
【清华大学鲁继文副教授】无监督视觉表征学习
专知会员服务
26+阅读 · 2022年3月17日
智能无人集群系统发展白皮书
专知会员服务
295+阅读 · 2021年12月20日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
混合增强视觉认知架构及其关键技术进展
专知会员服务
40+阅读 · 2021年11月20日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
67+阅读 · 2020年10月17日
《2020人工智能医疗产业发展蓝皮书》发布
专知会员服务
113+阅读 · 2020年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员