项目名称: 时域与频域中的分支理论及其在时滞系统中的应用
项目编号: No.11261010
项目类型: 地区科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 徐昌进
作者单位: 贵州财经大学
项目金额: 45万元
中文摘要: 本项目拟运用时域中的Hopf分支理论、中心流形和规范型理论、全局Hopf分支定理、频域中的Hopf分支理论及方向指标和稳定性指标等基本知识来研究时滞微分方程的稳定性、Hopf分支的存在性、Hopf分支周期解的分支方向、Hopf分支周期解的稳定性、Hopf分支周期解的周期等动力学行为。利用MATLAB软件对所得结论进行数值仿真以进一步验证所得结果的正确性。同时对系统中的参数(特别是时滞)对动力学行为的影响作出敏感性分析,考查系统是否出现周期现象和复杂的混沌行为。 本项目的研究将为处理系统参数对动力学行为的影响提供一些可行的分析方法、技巧和仿真技术, 进一步丰富时滞微分方程的分支理论,同时对系统的动力学行为的分析,将为我们掌握系统的变化发展规律,更好地利用和控制系统,服务人类提供理论指导和技术支持。因此,对时滞微分方程的Hopf分支的研究具有重要的理论意义和实际应用价值。
中文关键词: 时滞微分方程;Hopf分支;时域法;频域法;稳定性
英文摘要: Some basic knowledge,such as the Hopf bifurcation theory in time domain, the normal form theory and center manifold theory, the global Hopf bifurcation theorem, the Hopf bifurcation theory in frequency domain and direction index and stability index, etc., will be applied to investigate the dynamical behaviors including the stability, the existence of Hopf bifurcation, the direction, the stability and the period of Hopf bifurcation periodic solution of delayed differential equations. By means of MATLAB software, numerical simulations for justifying the theoretical analysis are also provided. Meanwhile, we will make a sensitive analysis on how the parameters, especilly the delays in system, affect the dynamical behavior of system and investigate wether periodic phenomenon and complexic chaotic behavior will occur. The investigation of the project will provide some feasible methods of analysis, technical skills and simulation technique to deal with what the parameters of system have effect on the dynamical behaviors and further enrich the bifurcation theory of delayed differential equations. Based on the analysis, we can govern the laws of the change and development of system, make better use of and control systems. It can also provide the theoretical guide and technical support for human being. Therefore ther
英文关键词: Delayed differential equations;Hopf bifurcation;Time domain approach;Frequency domain approach;Stability