项目名称: 类三明治结构的表面等离子纳米增益波导的研究

项目编号: No.11204107

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 吕柳

作者单位: 江苏大学

项目金额: 25万元

中文摘要: 表面等离子体光学是目前可以突破光的衍射极限,实现在纳米尺度上对光操纵的新兴学科。本项目主要研究引导电磁波传播的表面等离子体激元(SPPs)波导。既往的V型金属沟槽及金属纳米线等波导虽可把光局域在纳米尺度,却由于损耗增强难以实现长程传输,而金属条埋在介质中构成的波导虽可实现长程传输,却不具有良好的光束局域性。因此,模式损耗和局域性的竞争是目前制约SPPs波导发展的关键。对此,本项目拟研制带增益材料的三明治结构(金属/介质/金属)SPPs 波导。一方面,通过介质层厚度和宽度的调节,将SPPs高度局域在介质内部;另一方面,通过在介质层掺入增益纳米晶PbS,形成SPP增强纳米晶荧光,而PbS的荧光可实现对传输光的放大,从而有效保证光的传输距离和局域性。同时,我们将进一步优化纳米晶的荧光波长、激发强度和浓度对增益因子的贡献。项目的实施有望解决传输损耗和局域性的竞争关系,实现长程的SPP纳米波导。

中文关键词: MIM;表面等离子体波导;纳米晶荧光;电场局域;增益

英文摘要: Surface plasmons optics is a new and hot research frontier as the plasmons can break through the light diffraction resolution limit, and miniaturize the photon devices at the nano scale. This project mainly focuses on the electromagnetic waveguide of the surface plasmon polaritons (SPPs). Though the waveguide of the V type metal nanostructure can channel light efficiently into nanometer scale volumes, it is hard to achieve the long-distance transmission because of transmission loss. On the other hand, the waveguide with the metal embedded in the dielectrics can realize the long-distance transmission, but cannot localize the light efficiently. Therefore, it is critical for the SPPs waveguide to solve the competition between have the transmission loss and localization simultaneously. This project will investigate the gain-assisted waveguide with sandwich structure (i.e., metal/dielectrics/metal). The SPPs waveguide can be localized within the sandwich structure by adjusting its thickness and width, and can also be enlarged by embedding the gain-assisted materials. This project will investigate the parametric effects on the gain factor and optimize the the fluorescence wavelengh, stimulation power, and nanocrystal concentration. thickness of the sandwich structure and wavelength of the gain-assisted materials; ther

英文关键词: MIM;Surface plasmon waveguide;Nanocrystals'fluorescence;Electic localized;Gain

成为VIP会员查看完整内容
0

相关内容

AAAI 2022 | SASA: 重新思考三维物体检测中的点云采样问题
专知会员服务
23+阅读 · 2022年3月1日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】面向交通需求预测的耦合层图卷积
专知会员服务
45+阅读 · 2021年1月31日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
27+阅读 · 2018年4月12日
小贴士
相关主题
相关VIP内容
AAAI 2022 | SASA: 重新思考三维物体检测中的点云采样问题
专知会员服务
23+阅读 · 2022年3月1日
【牛津大学】多级蒙特卡洛方法,70页pdf
专知会员服务
58+阅读 · 2022年2月3日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【AAAI2021】面向交通需求预测的耦合层图卷积
专知会员服务
45+阅读 · 2021年1月31日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员