项目名称: 氧化锌/IIIA金属多层交替结构的界面磁性研究

项目编号: No.11304406

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 陈世建

作者单位: 重庆大学

项目金额: 30万元

中文摘要: 稀磁半导体,由于同时利用了电子的电荷特性和自旋特性,将半导体的信息处理与磁性材料的信息存储功能融合在一起, 是实现自旋电子器件的理想材料。本申请项目拟针对目前非磁性元素掺杂稀磁半导体材料中磁性弱和磁性来源机制不明确的问题,提出ZnO/IIIA多层交替结构模型,采用多层结构增强半导体/金属薄膜间的界面磁性,同时利用层间铁磁偶合的方式极化半导体夹层内的载流子自旋方向。通过分析ZnO/IIIA界面磁性随实验生长条件参数的变化,探索在非磁性元素体系中室温下获得强铁磁性的实验手段;结合实验和理论计算手段深入研究ZnO/IIIA多层交替结构中的界面电荷传递行为以及磁性来源机制。本项目最终将研制出载流子极化的低电阻率、高迁移率半导体导电薄膜,为实现磁性半导体材料在新型自旋电子器件上的应用奠定基础。

中文关键词: 稀磁半导体;氧化锌;多层膜;电荷转移;第一性原理

英文摘要: Diluted Magnetic Semiconductors, due to their utilities of manipulation of both the charge and spin of electrons and thus the integration of data processing and magnetic storage on a single chip, are promising materials for spintronics devices. This project is proposed to address the problems of current research on the topic of magnetic semiconductor with non-magnetic elements doping: weak magnetism and unclear mechanism behind the origin of ferromagnetism. We propose a model of multilayer structures of alternate ZnO and IIIA metal films,and the interface magnetism of semiconductor/IIIA metal will be enhanced in this multilayer structures and spin of electrons in semiconductor layer will be polorized with interlayer ferromagnetic coupling.Combining experimental methods and theoretical modeling, we will systematically investigate the charge-transfer behavior and the origin of the ferromagnetism in the interface of the ZnO/IIIA multilayer structures, and experimentally realize strong ferromagnetism at room temperature from this multilayer structure. Finally, we will prepare carrier-polarized semiconductor thin films with low resistivity, high carrier mobility, which can be potentially used in novel spintronics devices.

英文关键词: Diluted Magnetic Semiconductors;ZnO;multi-layer film;charge transfer;first pricinple

成为VIP会员查看完整内容
0

相关内容

深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
58+阅读 · 2022年3月26日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
56+阅读 · 2021年6月30日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2020年8月8日
事理图谱的构建与应用分论坛|CNCC2021
哈工大SCIR
1+阅读 · 2021年12月14日
CVPR 2019 | PointConv:在点云上高效实现卷积操作
机器之心
10+阅读 · 2019年4月21日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
基础 | GRU神经网络
黑龙江大学自然语言处理实验室
27+阅读 · 2018年3月5日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
28+阅读 · 2021年10月1日
小贴士
相关VIP内容
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
58+阅读 · 2022年3月26日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
56+阅读 · 2021年6月30日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2020年8月8日
相关资讯
事理图谱的构建与应用分论坛|CNCC2021
哈工大SCIR
1+阅读 · 2021年12月14日
CVPR 2019 | PointConv:在点云上高效实现卷积操作
机器之心
10+阅读 · 2019年4月21日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
基础 | GRU神经网络
黑龙江大学自然语言处理实验室
27+阅读 · 2018年3月5日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员