自动驾驶技术近年来迅速发展,其中无人车对周围环境的感知是最为重要的一个环节。为了保障行车安全,场景感知模块需要在三维环境中精确定位其他交通参与者,如车辆、行人、障碍物等。构建高精确度的场景感知模型对自动驾驶系统稳定安全地操纵车辆运行具有重要意义,因此3D物体检测(3D object detection)这一任务受到大量研究者关注。
目前,基于点云的3D物体检测模型主要分为划分体素进行特征提取的voxel-based方法和对点云直接进行特征提取的point-based方法。其中,在主流point-based方法中对点云进行下采样时容易丢弃很多前景点造成信息丢失,进而影响定位性能。
京东探索研究院联合悉尼大学提供了一种新的点云特征提取思路来帮助3D检测模型更多地关注前景物体,从而提高检测的精确度。该工作目前已被AAAI2022接收。