项目名称: 等离子体湍流减阻机理的耦合计算及实验研究

项目编号: No.51306042

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 能源与动力工程

项目作者: 刘华坪

作者单位: 哈尔滨工业大学

项目金额: 24万元

中文摘要: 采用数值模拟与实验测量相结合的方法,进行DBD等离子体湍流减阻机理研究。基于介质击穿过程的流体模型和湍流LES模拟方法,研究二者的耦合计算方法。针对Re=10000-100000的平板湍流边界层,研究等离子体激励对湍流边界层条带和涡结构形态、"喷射"和"下扫"猝发过程、湍动能和雷诺应力等参数的影响,分析等离子体参数(带电粒子、电场强度、电场力及焦耳热的空间分布)对流场参数(局部流动速度、涡量、涡结构等)的作用机制,较全面揭示等离子体湍流减阻机理。针对不同速度和湍流度的来流条件,考察不同激励参数下(电压、电极布置方式等)近壁区湍流拟序结构、喷射和下扫、湍动能、雷诺应力等参数的变化规律,得到流场变化与激励参数间的响应关系和机制,为该技术的应用奠定基础。

中文关键词: 等离子体;附面层;射流;湍流减阻;低速条带

英文摘要: The mechanism study of Dielectric barrier discharges (DBD) plasma effect on the turbulence drag reduction is carried out by the numerical simulation and experimental test. The breakdown process of plasma actuator based on the fluid model and turbulence simulation by the large-eddy simulation(LES) will be coupled together. For the flat boundary layer with the incoming velocity of Re=10000-100000, the plasma effects on the turbulent coherent structure, "ejection" and "sweeping" process, the production of turbulent energy and Reynolds stress are analyzed. Moreover the plasma parameters such as distribution of the charged particles, electrical force and joule heating, as well as the flow field parameters including the flow velocity, vorticity, vortex structure etc., are compared. Thus the mechanism of turbulent drag reduction would be proposed. Then to different velocity and turbulence intensity for the incoming flow, the actuation voltage, electrode arrangement is changed, the law of plasma effect on the coherent structures and the Reynolds stress would be exposed, which could lay the foundation for the application of the technology.

英文关键词: plasma;boundary layer;air jet;drag reduction;low speed strip

成为VIP会员查看完整内容
0

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
62+阅读 · 2022年2月9日
【博士论文】分形计算系统
专知会员服务
32+阅读 · 2021年12月9日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
专知会员服务
33+阅读 · 2020年11月26日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
专知会员服务
44+阅读 · 2020年3月6日
借助新的物理模拟引擎加速强化学习
TensorFlow
1+阅读 · 2021年8月16日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
python文本相似度计算
北京思腾合力科技有限公司
24+阅读 · 2017年11月6日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
23+阅读 · 2018年10月24日
小贴士
相关主题
相关VIP内容
清华大学:从单体仿生到群体智能
专知会员服务
62+阅读 · 2022年2月9日
【博士论文】分形计算系统
专知会员服务
32+阅读 · 2021年12月9日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
「数据数学:从理论到计算」EPFL硬核课程
专知会员服务
42+阅读 · 2021年1月31日
专知会员服务
33+阅读 · 2020年11月26日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
25+阅读 · 2020年5月7日
专知会员服务
44+阅读 · 2020年3月6日
相关资讯
借助新的物理模拟引擎加速强化学习
TensorFlow
1+阅读 · 2021年8月16日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
python文本相似度计算
北京思腾合力科技有限公司
24+阅读 · 2017年11月6日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员