编辑/凯霞
为了制造能够从阳光中汲取每一点能量的太阳能电池,研究人员依靠计算机建模工具。这些模拟器可以让他们评估设备结构、材料使用和不同材料层厚度等参数的细微调整对最终功率输出的影响。
目前,已有一些可免费获得的太阳能电池模拟器包,但是这些工具仍然很慢,并且不允许研究人员同时优化不同的设计参数。
来自麻省理工学院和 Google Brain 的一组研究人员新开发的软件可以简化太阳能电池的优化和发现。介绍了一种基于漂移扩散模型和用于光吸收的 Beer-Lambert 定律的端到端可微分光伏(PV)电池模拟器。∂ PV 不仅能够计算太阳能电池的效率,还能够计算其相对于用户设置的任何材料属性的导数。
这种新的计算工具可以对光伏电池进行广泛、高效的材料优化,并且可以与标准优化方法或机器学习算法结合使用。
该研究以「∂PV: An end-to-end differentiable solar-cell simulator」为题,发表在《Computer Physics Communications》杂志上。
可微分太阳能电池模拟器
传统的计算工具将特定太阳能电池设计的变量作为输入,然后输出最终的额定功率。
在这项工作中,研究人员提出了 PV,这是一种用于 PV 电池的一维模拟工具,它使用 JAX 自动微分(AD)包来求解漂移扩散方程。使用 AD 和隐函数定理,计算输入 PV 设计的功率转换效率(PCE)以及 PCE 相对于任何输入参数的导数,所有这些都在解决前向问题的可比时间内完成。
PV 补充了现有的基于 AD 的求解器,并且依靠这些工具的可组合性,有可能实现更高级的多物理场仿真的端到端可微性。
有了新软件,「我们提供输出,但也显示了如果我们改变任何输入参数,效率将会如何改变,」麻省理工学院研究科学家 Giuseppe Romano 说。「你可以连续更改输入参数,并查看输出如何变化的梯度。」
这就减少了开发人员运行这些耗时且需要大量计算的模拟的次数。「你只需进行一次模拟,就会自动获得所需的所有信息,」他说。「这就是这种方法的美妙之处。」
两种方式助力太阳能电池开发
新工具可以通过两种方式帮助太阳能电池开发。首先是优化,Romano 说:「假设一个行业参与者想要制造高性能太阳能电池,但不知道吸光材料对整体效率的影响。」 这种材料层通常有一个最佳厚度,可以从它吸收的光中产生最多的电荷载流子。该软件将帮助定义最优参数,使效率最大化。
该软件同样可以用于评估其他变量的最佳值,例如材料层的掺杂量、带隙或绝缘层的介电常数。
该工具的另一种作用方式是对现有太阳能电池进行逆向工程。在这种情况下,研究人员可以测量太阳能电池的 I-V 曲线(为每个电压提供电流的函数),并使用模拟器将这些实验测量值配对。根据数据,该软件可以帮助计算未知的特定材料参数的值。
研究案例
接下来,研究人员展示了钙钛矿太阳能电池优化和多参数发现的示例,并将结果与随机搜索和有限差分进行比较。
传统上,太阳能电池优化是通过各种无梯度黑盒优化技术完成的,例如粒子群和遗传算法。在没有任何额外信息的情况下,太阳能电池模拟器被视为黑匣子,优化成为一项数据密集型任务。特别是,同时优化多个参数的结合通常是棘手的。随着解析梯度的引入,一系列完善的非线性优化算法变得可用。
为了说明这一点,以优化 p-i-n 钙钛矿电池为例。对于非线性约束优化问题,选择顺序最小二乘规划(SLSQP)方法。SLSQP 已经在几个开源工具中实现,包括 Optim、NLOpt、PyOpt 和 Scipy。对于这项工作,选择了最后一项。
从 PCE 为 6.49% 的随机抽样初始设计开始,该算法仅在 306 次 PDE 求解后终止,达到 PCE 为 21.62% 的最佳点。这高于所有 200 个随机抽样设计的结果,后者相当于大约 4000 个 PDE 求解。