基于图像的三维重建,旨在从一组二维多视角图像精确地恢复真实场景的几何形状,是计算机视觉和摄影测量中一个基础且活跃的研究领域,具有重要的理论研究意义和应用价值,在智慧城市、虚拟旅游、数字遗产保护、数字地图和导航等领域有着广泛的应用。近年来,随着图像采集系统(包括智能手机、消费级数码相机、民用无人机)的普及和互联网的高速发展,用户可以通过搜索引擎(例如谷歌)轻松获取大量的关于某个室外场景的互联网图像。如何利用这些图像进行高效、鲁棒、准确的三维重建,为用户提供真实感知和沉浸式体验,已经成为研究热点,引发了学术界和产业界的广泛关注,现已涌现多种多样的解决方法。特别地,深度学习的出现为大规模室外图像三维重建的研究提供了新的契机。本文首先阐述大规模室外图像三维重建的基本串行过程,包括图像检索、图像特征点匹配、运动恢复结构、多视图立体。然后,本文将区分传统方法和基于深度学习的方法,系统而全面地回顾大规模室外图像三维重建技术在各个重建子过程中的发展和应用。之后,本文详细总结各个子过程中适用于大规模室外场景的数据集和评价指标。最后,本文将介绍现有主流的开源和商业三维重建系统以及国内相关产业的发展现状。

http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=202012270000001&journal_id=jig

成为VIP会员查看完整内容
55

相关内容

在计算机视觉中, 三维重建是指根据单视图或者多视图的图像重建三维信息的过程. 由于单视频的信息不完全,因此三维重建需要利用经验知识. 而多视图的三维重建(类似人的双目定位)相对比较容易, 其方法是先对摄像机进行标定, 即计算出摄像机的图象坐标系与世界坐标系的关系.然后利用多个二维图象中的信息重建出三维信息。 物体三维重建是计算机辅助几何设计(CAGD)、计算机图形学(CG)、计算机动画、计算机视觉、医学图像处理、科学计算和虚拟现实、数字媒体创作等领域的共性科学问题和核心技术。在计算机内生成物体三维表示主要有两类方法。一类是使用几何建模软件通过人机交互生成人为控制下的物体三维几何模型,另一类是通过一定的手段获取真实物体的几何形状。前者实现技术已经十分成熟,现有若干软件支持,比如:3DMAX、Maya、AutoCAD、UG等等,它们一般使用具有数学表达式的曲线曲面表示几何形状。后者一般称为三维重建过程,三维重建是指利用二维投影恢复物体三维信息(形状等)的数学过程和计算机技术,包括数据获取、预处理、点云拼接和特征分析等步骤。
专知会员服务
66+阅读 · 2021年5月21日
基于深度学习的视频目标检测综述
专知会员服务
81+阅读 · 2021年5月19日
基于深度学习的行人检测方法综述
专知会员服务
68+阅读 · 2021年4月14日
专知会员服务
45+阅读 · 2021年3月19日
专知会员服务
60+阅读 · 2021年3月9日
专知会员服务
61+阅读 · 2021年3月6日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
103+阅读 · 2020年11月27日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
图像修复研究进展综述
专知
18+阅读 · 2021年3月9日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
基于深度学习的视觉三维重建研究总结
人工智能前沿讲习班
8+阅读 · 2019年11月19日
专家报告 | 基于图像的三维重建
中国图象图形学报
5+阅读 · 2019年8月27日
基于深度学习的视频目标检测综述
极市平台
15+阅读 · 2019年7月19日
计算机视觉方向简介 | 基于单目视觉的三维重建算法
计算机视觉life
30+阅读 · 2019年4月9日
机器视觉技术的农业应用研究进展
科技导报
7+阅读 · 2018年7月24日
基于图像的场景三维建模
计算机视觉战队
13+阅读 · 2018年3月17日
【研究分享】基于踪片Tracklet关联的视觉目标跟踪:现状与展望
中国科学院自动化研究所
9+阅读 · 2018年1月16日
Differentially Private Densest Subgraph Detection
Arxiv
1+阅读 · 2021年5月27日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
24+阅读 · 2020年3月11日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Object detection on aerial imagery using CenterNet
Arxiv
6+阅读 · 2019年8月22日
Arxiv
4+阅读 · 2018年7月4日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关VIP内容
专知会员服务
66+阅读 · 2021年5月21日
基于深度学习的视频目标检测综述
专知会员服务
81+阅读 · 2021年5月19日
基于深度学习的行人检测方法综述
专知会员服务
68+阅读 · 2021年4月14日
专知会员服务
45+阅读 · 2021年3月19日
专知会员服务
60+阅读 · 2021年3月9日
专知会员服务
61+阅读 · 2021年3月6日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2021年2月7日
专知会员服务
103+阅读 · 2020年11月27日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
相关资讯
图像修复研究进展综述
专知
18+阅读 · 2021年3月9日
最全综述:基于深度学习的三维重建算法
极市平台
12+阅读 · 2020年3月17日
基于深度学习的视觉三维重建研究总结
人工智能前沿讲习班
8+阅读 · 2019年11月19日
专家报告 | 基于图像的三维重建
中国图象图形学报
5+阅读 · 2019年8月27日
基于深度学习的视频目标检测综述
极市平台
15+阅读 · 2019年7月19日
计算机视觉方向简介 | 基于单目视觉的三维重建算法
计算机视觉life
30+阅读 · 2019年4月9日
机器视觉技术的农业应用研究进展
科技导报
7+阅读 · 2018年7月24日
基于图像的场景三维建模
计算机视觉战队
13+阅读 · 2018年3月17日
【研究分享】基于踪片Tracklet关联的视觉目标跟踪:现状与展望
中国科学院自动化研究所
9+阅读 · 2018年1月16日
微信扫码咨询专知VIP会员