项目名称: 基于双器官窗口体系活体跨层次成像解析纳米颗粒代谢

项目编号: No.81501593

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 医药、卫生

项目作者: 林巧雅

作者单位: 华中科技大学

项目金额: 18万元

中文摘要: 由于各种天然屏障,基于纳米颗粒的药物在系统性给药时在肿瘤的摄取率仍非常低(通常<3%)。其中,单核吞噬细胞系统(MPS)是运输时的一个主要屏障。解析哪些因素能避免在MPS-尤其是在肝脏、脾脏中的损失,抑或是增加到肿瘤组织的递送,都是日后开发高效纳米药物的关键。目前尚无相关系统性、可视化研究的报道。由于肝、脾的深层解剖学特性,纳米颗粒与区域免疫细胞相互作用是高度动态的,如何在真实环境下系统地研究仍是我们面临的挑战。一方面需要有效的成像技术另外也需要系统性的成像窗口。基于此,本项目拟建立一种安全、系统性的活体双器官腹部成像窗口新方法,基于此体系以多光子显微成像为核心技术结合整体荧光成像与光声成像,对不同脂质纳米颗粒在MPS中的主要器官-肝、脾中的相互作用、运动过程进行跨层次(器官、组织以及细胞)的时空光学动态表征,揭示纳米颗粒代谢规律,为日后设计高肿瘤摄取率纳米药物提供新知识。

中文关键词: 纳米生物医学;多光子显微成像;光声成像;荧光分子层析成像;单核吞噬细胞系统

英文摘要: Because of various barriers exist in the systemic delivery, the tumor accumulation of nanoparticles based drugs is still very low (in common less than 3%). Among them, the mononuclear phagocyte system (MPS) is a major barrier to the delivery. Investigating the factor which can avoid the loss of nanoparticles in the MPS, especially in liver and spleen, or enhance the delivery to tumor, is the key for developing high efficient drug in future. It has been no related reports on systemic visualization study now. However, due to the interaction between nanoparticles and regional immune cells is highly dynamic, and the deep anatomic property of liver and spleen, it challenging us to investigate this issue in a true environment comprehensively. We need useful imaging techniques on one hand, and also need systemic imaging window. Thus, in our project, we aim to establish a novel method based on a safe, systemic and intravital dual-organ abdominal imaging window, to dynamically visualize the interaction and movement of different lipid nanoparticles and immune cells in liver and spleen, which are major organs in MPS, in a cross-level (organ, tissue and cell) by using multi-photon microscopic imaging when combing with the whole-body fluorescence imaging and photoacoustic imaging. And revealing the mechanism of nanoparticles biodistribution, thus providing new insights for designing high tumor accumulation of nanoparticles based drugs in future.

英文关键词: Nanobiomedicine;Multiphoton microscopic imaging;Photoacoustic imaging;Fluorescence molecular tomography;The mononuclear phagocyte system

成为VIP会员查看完整内容
0

相关内容

医学影像领域自世纪之交以来,可谓一枝独秀,持续飞速发展,许多新技术新模式现已成为不同领域疾病诊疗途径的关键一步。光声成像(Photoacoustic imaging,PAI)就是成功兴起的一种新型光学成像的模式,它利用光声效应克服了生物组织中光学光子的高度散射,组织分子吸收光子能量引起瞬时的局部温度升高,进而通过热弹性膨胀产生压力波,这些压力波作为超声信号在组织中传播,可被声学探测器吸收以形成图像。
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年7月26日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
32+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年12月8日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
人工智能预测RNA和DNA结合位点,以加速药物发现
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年7月26日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
32+阅读 · 2020年12月14日
专知会员服务
44+阅读 · 2020年12月8日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员