项目名称: 基于贝塞尔曲线曲面的汽车内腔喷涂机器人轨迹优化研究
项目编号: No.51505193
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 机械、仪表工业
项目作者: 汤养
作者单位: 江苏大学
项目金额: 20万元
中文摘要: 清洁生产是打造新常态汽车涂装技术升级版的难题。汽车内腔形状复杂,喷涂位置多、面积小,末端执行器变幅频繁,机器人轨迹优化难度大,目前主要还是人工喷涂,效果差且环境污染严重。本课题围绕贝塞尔(Bézier)曲线曲面理论最新成果,分析Bézier三角网格特征,研究基于有向连接图的Bézier-Bernstein三角面合并算法,自动生成汽车内腔Bézier三角曲面;搜寻Bézier曲面等距面离散点列阵,规划空气喷涂C-Bézier曲线路径,研究基于正则化狄拉克函数的机器人轨迹优化算法;构建基于三角函数基的T-Bézier曲线,分析曲线凸性、方差不变性等几何性质,研究机器人静电旋杯喷涂T-Bézier曲线轨迹生成方法。本课题旨在增强机器人喷涂路径形状控制的灵活度和柔性,突破复杂曲面喷涂轨迹优化过程效率低的技术局限,为实现汽车内腔机器人全自动化喷涂目标奠定理论和技术基础。
中文关键词: 喷涂机器人;贝塞尔曲线曲面;轨迹优化;汽车内腔
英文摘要: Clearer production is a difficult problem of upgrading automobile coating technology. It is difficult to optimize spray painting robot trajectories because of complex shape and small area in automobile internal cavity. And it leads to serious environmental pollution and poor quality of automobile body by manual spraying. In this project, the Bézier triangular surface is constructed by Bernstein polynomial. And each triangle in Bézier triangular mesh is called the Bézier- Bernstein triangle. Then the construction of the flat patch adjacency graph is discussed. The discrete points arrayed on equidistant surface of Bézier surface are found. The path planning is completed for C-Bézier curve. And the robot trajectories optimization algorithm based on regularization Dirac function is discussed. A T-Bézier basis is presented and a T-Bézier curve is developed.The electrostatic spray painting robot path planning is completed for T-Bézier curves. In this project, optimization trajectories methods of spray painting robots for automobile internal cavity will be proposed, and the technology of automobile spraying will be improved.
英文关键词: Spray Painting Robot;Bézier Curve and Surface;Trajectories Optimization;Automobile Internal Cavity