We propose a relighting method for outdoor images. Our method mainly focuses on predicting cast shadows in arbitrary novel lighting directions from a single image while also accounting for shading and global effects such the sun light color and clouds. Previous solutions for this problem rely on reconstructing occluder geometry, e.g. using multi-view stereo, which requires many images of the scene. Instead, in this work we make use of a noisy off-the-shelf single-image depth map estimation as a source of geometry. Whilst this can be a good guide for some lighting effects, the resulting depth map quality is insufficient for directly ray-tracing the shadows. Addressing this, we propose a learned image space ray-marching layer that converts the approximate depth map into a deep 3D representation that is fused into occlusion queries using a learned traversal. Our proposed method achieves, for the first time, state-of-the-art relighting results, with only a single image as input. For supplementary material visit our project page at: https://dgriffiths.uk/outcast.
翻译:我们为室外图像提议了一个亮光方法。 我们的方法主要侧重于从一个图像中以任意的新颖照明方向从一个图像中预测投影的阴影,同时也考虑到遮蔽和全球效应,如太阳光色和云彩。 这一问题以前的解决办法依赖于重建occluder几何学, 例如使用多视图立体, 这需要许多场景的图像。 相反, 在这项工作中, 我们使用一个吵闹的现成的单图像深度地图估计作为几何来源。 虽然这可以是某些照明效果的好指南, 由此产生的深度地图质量不足以直接对阴影进行射线跟踪。 解决这个问题, 我们提议了一个学习的图像空间光平面层, 将大约的深度地图转换成一个深3D代表层, 并结合成使用学习的轨迹查询。 我们提出的方法首次实现了“ 光化状态”, 并且只有一张图像作为输入。 补充材料访问我们的工程页面: https://dgriffith.uk/cast。