项目名称: 高效车载飞轮电池减振机理的研究

项目编号: No.51275238

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 机械、仪表工业

项目作者: 谢振宇

作者单位: 南京航空航天大学

项目金额: 76万元

中文摘要: 车载飞轮电池是一种高速磁悬浮储能飞轮,可作为驱动电动汽车的唯一或辅助能源。但是磁悬浮轴承存在涡流和磁滞损耗,不利于飞轮能量长时间保存。更为重要的是,高速飞轮转子在汽车行驶时将产生大小与方向不断变化的陀螺扰动力矩和惯性力并且转速变化范围大,导致磁悬浮轴承不能完全克服陀螺扰动力矩和惯性力的冲击,容易造成高速飞轮转子与磁悬浮轴承碰撞。本项目拟在低损耗磁悬浮轴承技术和飞轮转子的减振方法与机理两方面进行深入研究。提出变偏置电流方式,研究同极型结构和变偏置电流方式对降低磁悬浮轴承损耗的效果;引入金属橡胶隔振器,研究结构参数优化设计,以充分发挥金属橡胶隔振器和磁悬浮轴承各自的优点,有效减轻磁悬浮轴承的负担;提出并研究基于转速与变偏置电流方式的自调整模糊控制策略对车载飞轮电池系统动态性能的影响。本研究的目的是解决车载飞轮电池的碰撞问题并进一步减少其自放电,推动车载飞轮电池在电动汽车上的应用进程。

中文关键词: 车载飞轮电池;磁悬浮轴承;涡流损耗;陀螺力矩;金属橡胶隔振器

英文摘要: Flywheel Battery for vehicle is a kind of flywheel energy storage system supported by Active Magnetic Bearing and can be used for the only or auxiliary energy source for vehicle. However Active Magnetic Bearing will cause eddy current loss and hysteresis loss, so flywheel energy is difficult to be storaged for long time. More importantly, flywheel rotor with high and wide-range rotation speed will cause gyroscopic torque and inertial force with variable magnitude and direction which Active Magnetic Bearing can hardly bear when vehicle is running, so flywheel rotor is easy to run into Active Magnetic Bearing. The project will aim to further investigate low loss Active Magnetic Bearing and vibration attenuation mechanism of flywheel rotor. In the project, Variable Bias Current Control is advanced and the influence of homopolar structure and Variable Bias Current Control on power loss of Active Magnetic Bearing will be studied. Metal Rubber Isolator is introduced into Flywheel Battery for vehicle and structural parameter optimization design will be studied so that Metal Rubber Isolator and Active Magnetic Bearing can give the best use and the load of Active Magnetic Bearing is lightened. Self-Tuning Fuzzy Control strategy based on rotation speed and Variable Bias Current Control is also advanced and its influence o

英文关键词: Flywheel Battery for vehicle;Active Magnetic Bearing;eddy current loss;gyroscopic moment;Metal Rubber Isolator

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
达观智能制造知识图谱平台电力能源行业应用方案
专知会员服务
49+阅读 · 2022年4月13日
中国智能驾驶行业研究报告(附报告)64页pdf
专知会员服务
67+阅读 · 2022年3月6日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
55+阅读 · 2020年12月20日
汽车大厂,「疯抢」产能
36氪
0+阅读 · 2022年2月15日
道路网的高效分区
TensorFlow
3+阅读 · 2021年11月22日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
17+阅读 · 2019年3月28日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
达观智能制造知识图谱平台电力能源行业应用方案
专知会员服务
49+阅读 · 2022年4月13日
中国智能驾驶行业研究报告(附报告)64页pdf
专知会员服务
67+阅读 · 2022年3月6日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
55+阅读 · 2020年12月20日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员