项目名称: 基于时间分辨技术的铂和铱配合物纳米探针用于肿瘤乏氧成像检测

项目编号: No.21501121

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 李钰皓

作者单位: 上海理工大学

项目金额: 20万元

中文摘要: 纳米材料在生物医药领域具有广阔的应用前景。基于金属铂(Pt)和铱(Ir)配合物磷光发射及磷光寿命对氧含量的高灵敏响应,以及两亲性物质高度自组装易形成纳米结构的特点,结合时间分辨发光成像技术可消除检测干扰的优势,本项目提出构建两亲性配合物自组装的纳米探针,采用时间分辨近红外发光成像技术用于细胞至小动物水平上的肿瘤乏氧时间分辨成像检测。拟通过对材料结构的设计、合成和优化,获得高自组装性能配合物纳米材料。研究材料的光物理性质并探索基于时间分辨技术的氧传感与材料之间的构效关系。进一步利用纳米材料在生物体内的长循环能力及肿瘤组织对纳米材料的滞留,评估纳米配合物材料在肿瘤部位的富集能力,并研究采用时间分辨发光成像技术探索纳米配合物材料对乏氧肿瘤的长时间示踪检测,从而以时间分辨成像的方式直接获得肿瘤氧含量的信息。

中文关键词: 金属配合物;自组装;纳米粒子;乏氧显像;时间分辨

英文摘要: Nanomaterials have wide applications in biomedicine areas. Based on the Pt and Ir metal complexes fluorescence emission and lifetimes are sensitive to the oxygen, the self-assembly ability of amphipathic materials, and the advantage of time-resolved luminescent detection method can eliminate the interference signal, this project propose a self-assembly amphiphilic metal complex nano-sensor for the detection of oxygen level from cancer cell to tumor by time-resolved luminescent detection technique. The self-assembly property can be optimized by designing and modifying the material structure. The relationship of material structure and oxygen sensing ability using time-resolved luminescent detection technique also can be revealed by photophysical study. Then, the self-assembled nano-materials also can be delivered to the tumor region by the ability of long circulation and the effect of passive targeting. Further, the time-resolved luminescent imaging of the hypoxia tumor region can be realized by the response of nano-material’s phosphorescence and lifetime, and the method of time-resolved luminescent detection. So the oxygen concentration information can be obtained in situ by the time-resolved technique.

英文关键词: metal complex;self-assemble;nano particle;hypoxia imaging;time-resolved

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
24+阅读 · 2021年5月23日
专知会员服务
20+阅读 · 2021年5月1日
【CVPR2021】群体协同学习在共显著目标检测中的应用
专知会员服务
17+阅读 · 2021年4月6日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2021年2月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月16日
小贴士
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
【NeurIPS2021】多模态虚拟点三维检测
专知会员服务
18+阅读 · 2021年11月16日
专知会员服务
85+阅读 · 2021年8月8日
专知会员服务
24+阅读 · 2021年5月23日
专知会员服务
20+阅读 · 2021年5月1日
【CVPR2021】群体协同学习在共显著目标检测中的应用
专知会员服务
17+阅读 · 2021年4月6日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
42+阅读 · 2021年2月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员