项目名称: 非线性边界条件下的汽车不确定性拓扑优化方法
项目编号: No.51275040
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 机械、仪表工业
项目作者: 陈潇凯
作者单位: 北京理工大学
项目金额: 80万元
中文摘要: 拓扑优化理论与方法应用于汽车轻量化设计,是目前汽车工程领域的研究热点;解决含不确定性及非线性因素的汽车设计问题,是当前我国汽车自主开发的技术难点。 本项目构建面向拓扑优化方法的偏微分方程;根据所构建偏微分方程的作用机理,实现拓扑优化架构下的偏微分方程融合;进行基于偏微分方程的拓扑优化过滤及边界增强方法研究,实现数值不稳定抑制与边界轮廓增强的协调。将稀疏网格数值积分和插值扩展到概率空间的不确定性传播问题,实现基于稀疏网格技术的矩估计和可靠性估计。开展不确定性条件下基于可靠性稳健设计的拓扑优化方法研究,并针对某型自主知识产权汽车的轻量化设计开发问题进行实证分析,改善结构边界条件非线性、载荷随机性及设计参数随机性对结构设计的影响,实现轻量化设计方案的稳健性与可靠性。项目研究内容针对汽车开发中关键科学问题,致力于应用基础研究,可望为我国汽车自主开发提供良好的理论研究基础和技术支撑。
中文关键词: 汽车;轻量化设计;拓扑优化;不确定性;车辆动力学
英文摘要: The study and application of Topology Optimization to automotive light-weighting is the focus of automotive engineering. To improve the self-development ability, management of uncertainty and nonlinear during vehicle design is one of the bottlenecks and key technologies. In this study, the Partial Differential Equations (PDE) will be built for Topology Optimization problem. The integration will be realized between Topology Optimization and PDE, according to the mechanism of the built PDE. The study of Topology Optimization filtering and boundary improving which is based on PDE will be carried out and make a good compromise between the numerical instability suppressing and the topology and geometric boundary enhancement. Sparse grid numerical integration and sparse grid interpolation will be extended to the probabilistic domain for uncertainty propagation. The two techniques will be respectively used for moment and reliability estimation. Robust reliability design based on Topology Optimization under nonlinear boundary condition and uncertainties will be studied, and be demonstrated with the light weighting design of some automotive development problem. The influence of nonlinear boundary condition and uncertainties to structure design will be improved, and the the robust and reliability of the light-weighting de
英文关键词: Automotive;Lightweighting Design;Topology Optimization;Uncertainty;vehicle dynamics