项目名称: 合作协同进化算法的变量相关性学习与成组研究

项目编号: No.61473233

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 彭星光

作者单位: 西北工业大学

项目金额: 82万元

中文摘要: 合作协同进化算法(CCEA)分而治之的特点,赋予了其高效求解复杂问题的能力。然而,要充分发挥该特点,须确保算法问题分解的正确性。本项目旨在利用概率图形模型对变量关系的建模能力,研究CCEA的变量相关性学习及成组问题,为复杂大规模优化问题的高效求解提供技术手段。主要研究内容包括:①研究基于概率图形模型的CCEA框架,使其具有内在学习能力,并在此框架下研究有效的信息补偿策略,消除由问题分解所至信息丢失对算法全局优化能力的影响;②在概率图形模型CCEA框架下,研究贝叶斯网络模型的分散式构建方法,不断获得能够描述问题变量间关系的全局贝叶斯网络;③研究变量成组策略,适时将全局贝叶斯网络分解为若干子网络,并据此进行变量成组和问题分解,使算法能够自动调整对问题的分解形式。④研究算法的数值实验及分析,并针对新概念水下航行器的总体优化设计问题开展实验分析,验证算法解决实际问题的有效性。

中文关键词: 进化计算;合作协同进化;大规模优化;概率图形模型

英文摘要: Benefit by the divide-and-conquer feature, cooperative coevolutionary algorithms (CCEAs) can optimize with high efficiency by dividing a problem into independent components and optimizing them simultaneously. However, whether the problem is properly divided is a key to make full use of the divide-and-conquer feature. The main purpose of this proposal is to provide effective methods for solving large complex optimization problems in the real world. To this end, we use the probabilistic graphical model (PGM) which is powerful for modeling the variables dependency to investigate the methods of learning variables dependency and problem division. There are four issues in this proposal: (1) To design a PGM based CCEA framework so that the resulting CCEA is able to learn the variables' dependency. Besides, an effective information compensation strategy will also be studied to overcome the information loss when dividing the problem into small components, so that the global optimization performance could be guaranteed. (2) To investigate the decentralized Bayesian networks (BNs) learning method within the framework of PGM based CCEA. With this method, the global BN that can describe the relationships of the overall variables could be persistently updated during the evolutionary process. (3) To design the grouping strategy of the variables. At a proper moment, the global BN will be decomposed into some sub-BNs. According to these sub-BNs the variables could be grouped and the self-adaptive problem re-division could be achieved as well. (4) To analyze the proposed algorithms via numerical optimization experiments. Moreover, the problem of system optimization of new concept unmanned underwater vehicles will be used to verify the effectiveness of the proposed algorithms for solving real world applications.

英文关键词: evulutionary computation;cooperative coevolution;large scale optimization;probabilistic graphical model

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】类比进化算法:设计统一的序列模型
专知会员服务
16+阅读 · 2021年10月30日
专知会员服务
99+阅读 · 2021年6月23日
专知会员服务
37+阅读 · 2021年5月29日
专知会员服务
30+阅读 · 2021年4月12日
专知会员服务
27+阅读 · 2021年2月2日
经济学中的数据科学:机器学习与深度学习方法
专知会员服务
27+阅读 · 2020年10月19日
基于规则的建模方法的可解释性及其发展
专知
5+阅读 · 2021年6月23日
ICSE 2021:微软亚洲研究院精选论文,洞察软件工程前沿研究
微软研究院AI头条
0+阅读 · 2021年5月25日
多智能体强化学习(MARL)近年研究概览
PaperWeekly
36+阅读 · 2020年3月15日
用深度学习揭示数据的因果关系
专知
28+阅读 · 2019年5月18日
资源 | 一文读懂深度学习(附学习资源)
AI100
14+阅读 · 2017年11月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月2日
Arxiv
0+阅读 · 2022年4月29日
Arxiv
0+阅读 · 2022年4月29日
小贴士
相关VIP内容
【NeurIPS 2021】类比进化算法:设计统一的序列模型
专知会员服务
16+阅读 · 2021年10月30日
专知会员服务
99+阅读 · 2021年6月23日
专知会员服务
37+阅读 · 2021年5月29日
专知会员服务
30+阅读 · 2021年4月12日
专知会员服务
27+阅读 · 2021年2月2日
经济学中的数据科学:机器学习与深度学习方法
专知会员服务
27+阅读 · 2020年10月19日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员