项目名称: 基于学习技术的多目标进化算法重组算子研究

项目编号: No.61273313

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 周爱民

作者单位: 华东师范大学

项目金额: 80万元

中文摘要: 多目标优化问题(MOP)是在科研与应用领域广泛存在的一类挑战性问题。由于MOP最优解往往是一个集合(Pareto最优解集),进化算法等启发式方法已成为求解MOP的主流方法。目前多目标进化算法(MOEA)主要关注如何维护搜索种群的多样性和收敛性等算法框架(包含选择算子)的研究,忽略了如何从父体产生新个体(即重组算子)的研究。有效利用问题相关信息是启发式算法成功的关键之一。本项目拟着重研究MOEA重组算子的设计:深入分析并获取MOP最优解集和MOEA算法框架的先验信息,使用学习技术挖掘搜索群体中隐含最优解集的后验信息,在重组算子中采用合适的模式描述这些信息并用于指导新个体的产生。在此基础上设计高效的MOEA算法,并用图像处理等实际问题验证新算法的有效性。通过深入研究MOP Pareto最优解集特性和基于学习技术的MOEA重构算子设计原理,本项目的实施将为MOEA的设计和应用提供新思路。

中文关键词: 多目标优化;演化算法;学习;重组算子;图像处理

英文摘要: Multiobjective optimization problems (MOP) are a type of challenge problems in both scientific research and real-world application. Since the optimum of an MOP contains a set of solutions, named as Pareto optimal set, heuristic methods such as evolutionary algorithms have attacked much attention in recent years to approximate the Pareto optimal set. Currently, most of multiobjective evolutionary algorithms (MOEA) focus on how to maintain a set of solutions which is as diverse as possible and as close to the Pareto optimal set as possible, i.e., the framework(including selection procedure); but overlook how to generate new solutions from the parents, i.e., the recombination procedure. For this reason, this project addresses the recombination operator in MOEAs. The prior information about the MOPs and the MOEA framework will be extracted analytically, and the poster information from the population will be learned by machine learning techniques. The information will then be used to guide the generation of new trial solutions. New MOEAs based on the recombination operators will be validated by some real-world applications including image processing problems.By this project, (1) the properties of the MOPs and the principals to design recombination operators will be studied; and (2) new ideas and methods will be sugg

英文关键词: Multiobjective Optimization;Evolutionary Algorithm;Learning;Reproduction Operator;Image Processing

成为VIP会员查看完整内容
0

相关内容

面向大数据处理框架的JVM优化技术综述
专知会员服务
16+阅读 · 2021年11月27日
【NeurIPS 2021】类比进化算法:设计统一的序列模型
专知会员服务
15+阅读 · 2021年10月30日
专知会员服务
22+阅读 · 2021年9月30日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
29+阅读 · 2021年4月12日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
专知会员服务
94+阅读 · 2021年2月6日
AAAI2021 | 学习预训练图神经网络
专知会员服务
115+阅读 · 2021年1月28日
专知会员服务
136+阅读 · 2021年1月13日
专知会员服务
80+阅读 · 2020年6月20日
哪款应用的算法推荐让你觉得很准?
ZEALER订阅号
0+阅读 · 2022年4月9日
CUDA高性能计算经典问题:归约
极市平台
1+阅读 · 2022年1月13日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
面向大数据处理框架的JVM优化技术综述
专知
0+阅读 · 2021年11月27日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
教程 | 从头开始了解PyTorch的简单实现
机器之心
20+阅读 · 2018年4月11日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Simple and Effective Unsupervised Speech Synthesis
Arxiv
2+阅读 · 2022年4月20日
Arxiv
19+阅读 · 2021年4月8日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
13+阅读 · 2020年4月12日
Arxiv
11+阅读 · 2018年4月25日
小贴士
相关VIP内容
面向大数据处理框架的JVM优化技术综述
专知会员服务
16+阅读 · 2021年11月27日
【NeurIPS 2021】类比进化算法:设计统一的序列模型
专知会员服务
15+阅读 · 2021年10月30日
专知会员服务
22+阅读 · 2021年9月30日
专知会员服务
31+阅读 · 2021年7月25日
专知会员服务
29+阅读 · 2021年4月12日
【CVPR2021】面向视频动作分割的高效网络结构搜索
专知会员服务
13+阅读 · 2021年3月14日
专知会员服务
94+阅读 · 2021年2月6日
AAAI2021 | 学习预训练图神经网络
专知会员服务
115+阅读 · 2021年1月28日
专知会员服务
136+阅读 · 2021年1月13日
专知会员服务
80+阅读 · 2020年6月20日
相关资讯
哪款应用的算法推荐让你觉得很准?
ZEALER订阅号
0+阅读 · 2022年4月9日
CUDA高性能计算经典问题:归约
极市平台
1+阅读 · 2022年1月13日
基于多目标优化的推荐系统综述
机器学习与推荐算法
6+阅读 · 2021年12月27日
面向大数据处理框架的JVM优化技术综述
专知
0+阅读 · 2021年11月27日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
教程 | 从头开始了解PyTorch的简单实现
机器之心
20+阅读 · 2018年4月11日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
9+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员