项目名称: 脑肌电同步反馈下康复助力机器人状态评价与参数优化
项目编号: No.61271142
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 无线电电子学、电信技术
项目作者: 谢平
作者单位: 燕山大学
项目金额: 76万元
中文摘要: 提高康复机器人的智能化、人性化服务品质,构建生物反馈下完备有效的康复训练策略,是当前康复机器人亟待研究的问题。 本项目以融合"脑肌电同步特征"实现"康复机器人运动状态评价与参数优化"为研究目标,探讨康复机器人平台下脑肌电动态特征融合、机器人运动状态评价、基于生物反馈的助力参数优化等关键科学问题。基于生物电信号参数估计和动态特征提取方法,研究有效的脑肌电同步分析方法,获取人体运动意图和肌肉运动响应的功能联系,构建患者康复状态分类及评价新方法;研究融合脑肌电特征和机器人运动状态特征的聚类学习方法,获取对应运动模式下生物反馈特征,重点解决康复机器人运动状态定量评价问题;基于人机耦合动力学分析和匹配优化机制,提出以脑肌电同步特征为目标函数的康复机器人助力参数优化方法;进一步,创新设计"以人为中心"的康复训练策略,研制基于脑肌电反馈的下肢康复助力机器人实验样机,为康复机器人临床实用化奠定基础。
中文关键词: 康复机器人;生物反馈;脑肌电同步分析;运动状态评价;自适应交互控制
英文摘要: Improving the humanization and intelligentization,constructing the effective rehabilitation training strategy based on biological feedback are the urgent issues need to be studied for rehabilitation robots. Aiming to realize 'kinematic state evaluation and parameter optimization of rehabilitation robot' fusing 'synchronous feature extraction of EEG-EMG', several scientific issues are researched here, which include EEG-EMG dynamic feature fusion, kinematic state evaluation of the robot and power parameter optimization based on biofeedback. Based on parameter estimation and dynamic feature extraction of bioelectrical signals, new effective EEG-EMG synchronization analysis method is studied to describe the functional relationship between human motion intention and muscle response. And the algorithm for classification and evaluation on the rehabilitation states is proposed. Focusing on solving quantitative evaluation on kinematic state, a cluster learning algorithm fusing EEG-EMG characteristics and robotic kinematic state features is designed to obtain the biofeedback characteristics on corresponding motion pattern. Based on human-machine coupling dynamic analysis and matching optimization mechanism, the EEG-EMG synchronization characteristic is taken as the objective function to explore a power parameter optimizat
英文关键词: rehabilitation robot;biofeedback;EEG-sEMG synchronization analysis;kinematic state evaluation;adaptive interaction control