项目名称: 多元素交互作用下镍基单晶高温合金位错芯的结构和位错芯区的应变场研究

项目编号: No.51271097

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 张建新

作者单位: 山东大学

项目金额: 78万元

中文摘要: 本项目通过电子显微镜研究镍基单晶高温合金在不同蠕变条件下位错芯的结构和位错芯区的应变场特征。研究合金成分以及蠕变条件对于gamma相滑移位错、gamma prime相超位错以及gamma/gamma prime相界面位错等缺陷的组态、芯部结构及芯区应变场的影响规律,揭示成分和服役条件对于位错组态形成和演化的本质作用;研究合金成分在位错芯区的分布特点和赋存状态,建立位错芯区结构的物理模型;借助于第一性原理和分子动力学计算等方法模拟位错芯区结构,分析位错组态演化的物理本质。通过实验研究与理论模拟的综合分析,揭示高温合金成分-组织-性能之间的关系,逐步比较得出高温合金强化机理与缺陷控制理论。

中文关键词: 高温合金;位错芯;TEM;分子动力学;第一性原理

英文摘要: This project is aimed to study the structure and strain field of dislocation cores in nickel-based single-crystal superalloys under different creep conditions with the aid of transmission electron microscopes. Effect of composition and creep conditions on the structure and strain field of dislocation cores in the gamma phase, gamma prime phase and gamma/gamma prime interface will be researched to reveal the dependence of dislocation configurations upon the composition and service conditions. A physical model of dislocation cores will be given based on the distribution and existence of alloying elements. A computer simulation and analysis of the dislocation core structures will be carried out according to the methods of first principles calculation, molecular dynamics simulation, etc to reveal the nature of the dislocation configurations. By comprehensive researches with experimental observation and theoretical analysis, the relationships among compositions, microstructures, and properties in superalloys will be rationalized. The strengthening mechanism and defect-control theory will be developed in superalloys based on the planned work.

英文关键词: superallloy;dislocation core;TEM;molecular dynamics;first principles

成为VIP会员查看完整内容
0

相关内容

深度生成模型综述
专知会员服务
50+阅读 · 2022年1月2日
专知会员服务
150+阅读 · 2021年9月25日
专知会员服务
34+阅读 · 2021年7月19日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
173+阅读 · 2020年11月23日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
74+阅读 · 2020年6月8日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
AI从底物和酶的结构中预测米氏常数,量化酶活性
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
57+阅读 · 2020年7月12日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
The Importance of Credo in Multiagent Learning
Arxiv
0+阅读 · 2022年4月15日
Arxiv
24+阅读 · 2021年6月25日
小贴士
相关主题
相关VIP内容
深度生成模型综述
专知会员服务
50+阅读 · 2022年1月2日
专知会员服务
150+阅读 · 2021年9月25日
专知会员服务
34+阅读 · 2021年7月19日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
173+阅读 · 2020年11月23日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
74+阅读 · 2020年6月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员