项目名称: 高压下新型氢分子化合物结构与性质的理论研究

项目编号: No.11204100

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 段德芳

作者单位: 吉林大学

项目金额: 25万元

中文摘要: 高压条件下合成的新型氢分子化合物,如H2O(H2)、CH4(H2)4、SiH4(H2)2、GeH4(H2)2等,因其具有较高的氢含量,一方面可以作为潜在的储氢材料;另一方面,压致金属化之后将会呈现许多金属氢中的特殊性质,如高温超导特性。本项目拟采用基于密度泛函理论的第一性原理计算方法,结合晶体结构搜索技术,选择第IV和VI主族氢化物与氢气在高压下形成的新型氢分子化合物为研究对象,探索其在高压下的晶体结构,获得高压相变过程与规律,深入认识高压下新型氢分子化合物的电子状态、原子间键合以及微观相互作用的演化过程,揭示其高压合成机理,确定压致金属化和超导电性出现的条件。通过该项目的实施可以加深对新型氢分子化合物的理解,不仅为探索储氢材料提供研究思路,还为金属氢和超导材料的研究提供一条崭新的途径,有望获得一些创新性研究成果。

中文关键词: 高压;第一性原理;富氢化合物;超导电性;结构

英文摘要: Several new hydrogen molecule compounds have been synthetized under high pressure, such as H2O(H2), CH4(H2)4, SiH4(H2)2, and GeH4(H2)2. Because of the high amount of hydrogen, they have been attracted as the potential hydrogen storage materials and will show some special properties of metal hydrogen after metallization, for example, high temperature superconductivity. So, the new hydrogen molecule compounds synthetized under high-pressure by the IV or VI main group hydride and hydrogen, will be studied in this project by means of the first principle calculation based on density-functional theory and crystal structure search technology. This project aims to explore crystal structure of new hydrogen molecule compounds at high pressure, get high pressure phase transition process, understand the evolution law of electronic state and intermolecular interactions with pressure, reveal the mechanism of high pressure synthesis, obtain the conditions of pressure-induced metallization and superconductivity. Through the implementation of the project, it can improve our understanding of new hydrogen molecule compounds, not only offer new research ideas for exploring hydrogen storage materials, but also provide a brand-new pathway for studies of metal hydrogen and superconducting materials. It is expected to get some innovati

英文关键词: High pressure;First-principle;hydrogen-rich compounds;superconductivity;structure

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
104+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年11月13日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
46+阅读 · 2019年9月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
15+阅读 · 2018年6月23日
小贴士
相关VIP内容
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
104+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年11月13日
知识图谱本体结构构建论文合集
专知会员服务
102+阅读 · 2019年10月9日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
46+阅读 · 2019年9月24日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
微信扫码咨询专知VIP会员