项目名称: 关于激光成丝不稳定性的高效数值算法研究
项目编号: No.11201033
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 胡晓燕
作者单位: 北京应用物理与计算数学研究所
项目金额: 22万元
中文摘要: 为了考察激光成丝不稳定性的各种物理机制,包括塌缩现象和热成丝效应,建立了新的计算模型。由于该问题对数值算法的精度及计算能力要求较高,因此需要研究适合于该问题的高效的数值算法。这将面临两个挑战:一是如何构造能正确描述等离子体运动特征的数值算法。这个算法必须满足:①它是总能量守恒的非守恒形式的差分格式;②能正确描述等离子体密度排空现象及梯度变化大等物理特征;③计算效率高。而现有的数值方法从守恒性、稳定性及效率方面不能同时满足上述需求。二是在多尺度物理耦合情况下,如何进行时间积分。 本项目研究:Euler方程的高分辨率数值算法和多物理场耦合时的时间积分方法对成丝不稳定性的影响;研究能够正确描述该问题中等离子体运动特征的数值算法;提出适合该物理问题的自适应的时间积分方法;研究适应于上千处理器,具有守恒性又保持稳定的,适合这个应用问题的高效数值算法。旨在使激光成丝不稳定性数值模拟具有理论和实际意义。
中文关键词: 数值算法;并行算法;高效;;
英文摘要: For reviewing the various mechanisms of the laser filamentation instability, including dumping phenomenon and thermal filamentation, new computation module is established. Because this problem requires high precision and strong computing ability, the efficient numerical algorithm must be researched. Two challenges will be faced: on the one side,how to construct the numerical algorithm of plasma which can describe plasma's movement correctly. This algorithm must satisfy ① It is non-conservation form difference schemes which guarantee conservation of total energy;② Density of plasma nears zero, moreover, its gradient changes greatly, which can be described correctly; ③High computational efficiency must be included. But the existing numerical algorithm can't satisfy these requirements at one time. On the other hand, the velocity of every field is different, how to choose time integral adaptively in multiscale physics. The main contents included: The influence of the high precision numerical algorithm of Euler equations and the time integral of multi-physics field on the stability of the stimulating problem;the suitable numerical algorithm for the governing equations of plasma;the adaptive time integral of this problem; lastly, we study the efficient numerical algorithm which must be conservational and stable on the
英文关键词: numerical algorithm;parallel algorithm;high efficiency;;