项目名称: 可融合偏好的大规模进化优化算法研究

项目编号: No.61305084

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 杨振宇

作者单位: 中国人民解放军国防科学技术大学

项目金额: 24万元

中文摘要: 实际应用中存在着大量的大规模优化问题,进化优化算法虽然是目前求解该类复杂优化问题的有效方法之一,但现存算法一般仍只适用于决策变量比较少(如少于100个)的小规模问题,无法满足应用需求。此外,由于大规模优化问题解空间非常庞大,仍苛求其全局最优解显得很不现实,根据用户偏好提供满意解往往是更有效的解决方案,而不同用户甚至同一用户在不同时期对问题解的偏好很可能存在较大差别,因此在优化算法中加入可融合偏好的机制显得非常重要。针对上述问题,本项目主要研究面向大规模优化问题的新求解思路,以及优化过程中提取和融合偏好的有效方法,进而设计一种可融合偏好的大规模进化优化算法,并采用标准测试问题集和实际应用问题对其性能进行测试与分析。本项目关键技术的攻克将有望使进化优化算法在一定程度上突破求解大规模优化问题的瓶颈,并可方便地融合用户偏好提供满意解。

中文关键词: 大规模优化;演化优化;用户偏好;;

英文摘要: Large-scale optimization problems are very common in various real-world applications. Although the class of evolutionary optimization algorithms is one of the most effective approaches for solving complex optimization problems, most existing algorithms are only applicable to small-scale problems (e.g. with smaller than 100 decision variables), and thus cannot fulfill the requirements of many important applications. In addition, since the solution space of a large-scale problem is often very large, it is not realistic to always pursue its global optimum. So providing a satisfying solution based on user preferences is often a better choice. The preferences of different users, or even different periods of the same user, may be quite different, so introducing a mechanism, which can incorporate different user preferences with the optimization algorithms, becomes very important. To address the above issues, this project will mainly focus on new ideas for solving large-scale optimization problems, methods to extract and incorporate user preferences, and finally delivering preference incorporated large-scale evolutionary optimization algorithms. The performance of the design algorithm will be evaluated and analyzed on both standard benchmarks and a real-world application. The key acquisitions of this project are potenti

英文关键词: large-scale optimization;evolutionary optimization;user preferences;;

成为VIP会员查看完整内容
0

相关内容

【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
基于强化学习的推荐研究综述
专知会员服务
83+阅读 · 2021年10月21日
【WWW2021】 大规模组合K推荐
专知会员服务
43+阅读 · 2021年5月3日
专知会员服务
73+阅读 · 2020年12月7日
专知会员服务
77+阅读 · 2020年12月6日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
哪款应用的算法推荐让你觉得很准?
ZEALER订阅号
0+阅读 · 2022年4月9日
QQ音乐推荐召回算法的探索与实践
专知
0+阅读 · 2022年4月4日
WSDM2022 | 跨领域推荐中的个性化迁移用户兴趣偏好
机器学习与推荐算法
1+阅读 · 2021年11月3日
【WWW2021】 大规模组合K推荐
专知
0+阅读 · 2021年5月3日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
大规模知识图谱的构建、推理及应用
人工智能头条
15+阅读 · 2017年8月29日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
12+阅读 · 2020年6月20日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Arxiv
12+阅读 · 2018年1月28日
小贴士
相关VIP内容
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
基于强化学习的推荐研究综述
专知会员服务
83+阅读 · 2021年10月21日
【WWW2021】 大规模组合K推荐
专知会员服务
43+阅读 · 2021年5月3日
专知会员服务
73+阅读 · 2020年12月7日
专知会员服务
77+阅读 · 2020年12月6日
大规模时间序列分析框架的研究与实现,计算机学报
专知会员服务
58+阅读 · 2020年7月13日
相关资讯
哪款应用的算法推荐让你觉得很准?
ZEALER订阅号
0+阅读 · 2022年4月9日
QQ音乐推荐召回算法的探索与实践
专知
0+阅读 · 2022年4月4日
WSDM2022 | 跨领域推荐中的个性化迁移用户兴趣偏好
机器学习与推荐算法
1+阅读 · 2021年11月3日
【WWW2021】 大规模组合K推荐
专知
0+阅读 · 2021年5月3日
一文读懂图像压缩算法
七月在线实验室
15+阅读 · 2018年5月2日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
大规模知识图谱的构建、推理及应用
人工智能头条
15+阅读 · 2017年8月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员