项目名称: 多策略自适应群智能算法及其在大规模生产调度中的应用
项目编号: No.61305150
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 王晖
作者单位: 南昌工程学院
项目金额: 25万元
中文摘要: 在大部分群智能算法及其改进的算法中,群体中所有个体由于采用相同的进化策略而表现出相同的搜索行为(全局或局部)。针对这个问题,本项目提出了多策略自适应群智能算法。该方法构造了一个多策略集,并为每个个体分配一种进化策略。在进化过程中,个体根据当前的搜索状态自适应地调整自身的搜索行为。因此,该方法能较好地平衡算法的全局和局部搜索,提升算法的普适性。 目前,群智能算法主要应用于中小规模的生产调度问题。对于大规模调度问题,大多数算法在计算时间上很难让人接受。针对大规模调度问题的求解,本项目在已有调度算法的基础上,构造了基于GPU的多策略自适应群智能调度算法。通过GPU并行处理技术,缩短计算时间,使得算法能够在有限的时间和硬件资源条件下(普通PC机)找到满意的解。 本项目的研究为提高群智能算法的普适性提供了重要的参考,并为在普通PC机上解决大规模调度问题提供了新的方法,具有重要的理论意义和应用价值。
中文关键词: 群智能算法;多策略自适应算法;GPU;大规模生产调度;
英文摘要: In most swarm intelligence algorithms and their improved variants, all individuals in the population exhibit the same search behavior (global or local) because of using the same evolutionary strategy. For this problem, this project proposes an adaptive multi-strategy swarm intelligence algorithm, which constructs a multi-strategy set and assigns a strategy to each individual. During the evolutionary process, the search behaviors of individuals are adaptively adjusted according to the current search status of the population. Therefore, the approach can make a good balance between the global and local search, and improve the generality of the algorithm. At present, swarm intelligence algorithms are mainly applied to small and medium scale production scheduling problems. For large-scale scheduling problems, the computation time of most algorithms can be hardly acceptable. To solve large-scale scheduling problems, this project constructs a GPU based adaptive multi-strategy swarm intelligence scheduling algorithm on the basis of existing scheduling algorithms. By the GPU parallel processing technology, we can reduce the computation time and make the algorithm find satisfactory solutions under the condition of limited time and hardware resources (ordinary PC). The research of this project provides important reference
英文关键词: Swarm intelligence algorithm;multi-strategy adaptive algorithm;GPU;large-scale production scheduling;