项目名称: 贝赛尔光束在光学显微成像中的应用研究

项目编号: No.61275191

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 叶彤

作者单位: 中国科学院西安光学精密机械研究所

项目金额: 88万元

中文摘要: 贝塞尔光束是一种典型的"无衍射"光束,其在传播途径中受到扰动时会有重新恢复的能力,即所谓"自愈合"光学特性。贝赛尔光束的独特性质在很多领域得到应用,但在应用于显微成像领域的探索自2010年才刚刚起步。本项目旨在利用Bessel光束的无衍射和自愈合等特性,从理论和实验上深入探讨其在生物组织荧光成像中的应用。我们将集中在以下这四个方面的研究:1、Bessel光束的产生和其参数的调控;2、无衍射光束在散射介质中传播特性的理论和实验研究;3、Bessel光束在深层组织中双光子荧光立体成像技术的研究;4、超分辨生物组织的三维成像的研究。最后的研究成果将集中在两套成像系统的建立:1)高速双光子荧光三维体成像,利用立体视镜的原理结合Bessel光的长聚焦扫描特点来获得三维图像;2)STED扫描结构光照明的超分辨成像系统,该系统用结构光照明实现XY方向的分辨率提高,用STED的原理实现Z方向的分辨。

中文关键词: 贝塞尔光束;荧光显微;高速三维成像;立体显微成像;散射介质中的光传输

英文摘要: Bessel beams are one type of light field that can propagate "nondiffractingly". When such a beam experiences a disturbance, it can reconstruct or heal itself to recover its original form, i.e. "self-healing". The unique optical properties of Bessel beams lead to many applications in various fields, among which imaging applications have been just started in recent years. In this application we will study both theoretically and experimentally on how to fully utilize the optical properties of Bessel beams to enhance capabilities of fluorescence imaging of biological tissues. We will focus our research on the following four aspects: 1. generation and fine tuning of Bessel beams; 2. theoretical and experimental study of the beam propagation in scattering media; 3. application of Bessel beams in 3D imaging in deep tissue; and 4.3D super-resolution imaging in biological tissues. We will end it up with implementation of two novel imaging systems: 1) a fast two-photon fluorescence 3D imaging system, which will use the principle of a stereoscope to acquire 3D volumetric images when scanning two Bessel beams alternately; and 2) a super-resolution imaging system, which uses the structured illumination method to improve the resolution in XY plane and the STED method to improve the resolution in Z direction.

英文关键词: Bessel beam;Fluorescence microscopy;High speed 3-D imaging;Stereomicroscopy;Light propagation in scattering media

成为VIP会员查看完整内容
0

相关内容

【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
18+阅读 · 2020年12月23日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
图像分割在医学影像中的应用
极市平台
2+阅读 · 2022年2月16日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
14+阅读 · 2020年10月26日
Arxiv
38+阅读 · 2020年3月10日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
27+阅读 · 2021年9月6日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
42+阅读 · 2021年2月8日
专知会员服务
18+阅读 · 2020年12月23日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
相关资讯
图像分割在医学影像中的应用
极市平台
2+阅读 · 2022年2月16日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
深度学习之图像超分辨重建技术
机器学习研究会
12+阅读 · 2018年3月24日
红外弱小目标处理研究获进展
中科院之声
17+阅读 · 2017年11月19日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员