项目名称: 薄膜光子筛拼接大口径空间光学系统的关键技术

项目编号: No.61505203

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 钟兴

作者单位: 中国科学院长春光学精密机械与物理研究所

项目金额: 20万元

中文摘要: 空间光学遥感对于地面分辨率提出的要求越来越高,光学系统口径的增大成为必然。传统大口径折反式光学系统的体积和质量给发射带来了极大困扰。利用加工在薄膜上的衍射结构可以解决这个问题。衍射光学系统不仅可以获得突破加工尺寸的空间分辨率,同时对公差的要求仅为传统系统的一半。光子筛是一种基于波带片衍射光学结构,其上分布的大量筛孔对光场进行调制,聚焦成像。作为新兴的衍射光学结构,光子筛可以产生更高的分辨率、更理想的衍射旁瓣抑制、更少的边缘散射。利用其特点设计的光学系统可通过拼接实现轻量化的超大口径。然而,光子筛在大口径条件下的成像理论存在局限性、拼接带来的应用误差以及较窄的系统视场及光谱带宽等是目前存在的问题。本项目针对上述问题进行深入研究,以解决这些制约薄膜光子筛拼接大口径光学系统的工程应用问题,也为薄膜拼接大口径空间衍射光学系统建立此类问题的理论基础。

中文关键词: 空间光学系统;;衍射光学;大口径

英文摘要: Since higher and higher resolution required by the space optical remote sensing, the size of optical aperture has to be even large. Traditional reflective/refractive system is troubled with the unbearable volume and mass when the large system deployed in space. This problem can be solved by the diffractive structure employed on a membrane. Diffractive optics can not only achieve a spatial resolution beyond the fabrication accuracy, but also call for a loose tolerance compared with the traditional ones. Photon sieves are kinds of novel diffractive optics based on zone plates. A great quantity of sieves modulate the light field and focus. Photon sieves can achieve higher resolution, better sidelobe suppression and less scattering. The optical system designed by using stitching membrane photon sieves can be lightweight ultra-large. Nevertheless, obstacles here hinder this system to be engineering available: the limitations of the image theory when the aperture gets large; applying errors when the optics are stitching, folding and expansion; narrow field of view and wavelength bandwidth of the diffraction system, etc. This project steps into these issues, and solve the problems involved in the membrane stitching photon sieves system with large aperture. This work also contributes to the theory foundation of the similar diffraction systems using stitching membranes.

英文关键词: space optical system;diffraction optical;large aperture

成为VIP会员查看完整内容
0

相关内容

数字孪生模型构建理论及应用
专知会员服务
224+阅读 · 2022年4月19日
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
12+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
43+阅读 · 2022年3月21日
专知会员服务
67+阅读 · 2021年5月8日
专知会员服务
43+阅读 · 2021年2月8日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
58+阅读 · 2021年11月15日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关VIP内容
数字孪生模型构建理论及应用
专知会员服务
224+阅读 · 2022年4月19日
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
12+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
6G物理层AI关键技术白皮书(2022)
专知会员服务
43+阅读 · 2022年3月21日
专知会员服务
67+阅读 · 2021年5月8日
专知会员服务
43+阅读 · 2021年2月8日
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员