项目名称: 基于手机数据的城市道路车源预测理论研究

项目编号: No.51208520

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 建筑环境与结构工程学科

项目作者: 王璞

作者单位: 中南大学

项目金额: 25万元

中文摘要: 面向当代严重的城市交通拥堵,城市交通规划与组织水平受到人们的广泛关注,交通需求作为交通规划与组织的重要基础数据,其获取方法一直以来都是非常重要的研究课题。由于传统的交通需求预测方法耗费巨大的人力物力,利用各种信息资源进行数据挖掘,分析获取交通需求成为了新的研究方向。基于大规模手机数据和人类出行建模领域的最新成果,本项目研究城市道路车源预测理论。主要研究内容包括:基于手机数据的城市居民出行建模、基于手机数据的交通需求预测、城市道路车源预测、导致拥堵的车源分析。通过运用手机数据准确预测居民实时位置,计算居民出行分布、估计O-D矩阵,找到一种经济、可行的交通需求预测方法。本项目将人类出行建模领域的最新成果引入到交通需求预测中,通过产生道路车流的人的实时位置掌握车流的形成过程,动态分析各路段的车辆来源,以期搭建人类出行行为研究领域与交通需求预测研究领域的桥梁。

中文关键词: 大规模手机数据挖掘;人类出行建模;交通需求预测;车源预测;

英文摘要: Currently, we are faced with severe urban traffic congestions. The urban traffic planning and organizing level has been paid much attention. As an important fundamental data for ubran traffic planning and organization, traffic demand has been an important research topic for a long time. Since it is expensive to predict traffic demand by traditional surveys, as a new reseach direction, many new information sources are used. Based on large scale mobile phone data, we propose the theory of driver source prediction. The main contents of this project include: resident mobility model based on mobile phone data, prediction of traffic demand based on mobile phone data, prediction of driver sources on urban roads, analysis of the driver sources that cause traffic congestions. Using mobile phone data, we aim to accurately predict the residents' hourly locations and calculate trip distribution and O-D matrix. Through this method we try to find an economic and feasible way to predict traffic demand. By introducing the newest results of human mobility modeling to traffic demand prediction, we aim to understand the process of the formation of traffic flow by finding drivers' hourly locations. We will dynamically analyze the driver sources on roads, aiming to build a bridge between the fields of human mobility modeling and t

英文关键词: Large Scale Mobile Phone Data Mining;Human Mobility Modeling;Traffic Demand Prediction;Driver Source Prediction;

成为VIP会员查看完整内容
0

相关内容

【经典书】时间序列分析与预测导论,671页pdf
专知会员服务
151+阅读 · 2022年4月1日
城市数字孪生标准化白皮书(2022版)
专知会员服务
176+阅读 · 2022年1月12日
专知会员服务
49+阅读 · 2021年8月4日
专知会员服务
65+阅读 · 2021年5月3日
专知会员服务
73+阅读 · 2021年4月8日
专知会员服务
52+阅读 · 2020年12月19日
手机的负一屏有用吗?
ZEALER订阅号
0+阅读 · 2021年11月14日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
【WWW2021】面向时空图预测的神经结构搜索
【综述】交通流量预测,附15页论文下载
专知
22+阅读 · 2020年4月23日
智慧公路建设方案
智能交通技术
30+阅读 · 2018年2月28日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
10+阅读 · 2020年6月12日
小贴士
相关VIP内容
【经典书】时间序列分析与预测导论,671页pdf
专知会员服务
151+阅读 · 2022年4月1日
城市数字孪生标准化白皮书(2022版)
专知会员服务
176+阅读 · 2022年1月12日
专知会员服务
49+阅读 · 2021年8月4日
专知会员服务
65+阅读 · 2021年5月3日
专知会员服务
73+阅读 · 2021年4月8日
专知会员服务
52+阅读 · 2020年12月19日
相关资讯
手机的负一屏有用吗?
ZEALER订阅号
0+阅读 · 2021年11月14日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
【WWW2021】面向时空图预测的神经结构搜索
【综述】交通流量预测,附15页论文下载
专知
22+阅读 · 2020年4月23日
智慧公路建设方案
智能交通技术
30+阅读 · 2018年2月28日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员