摘要:过去几年,卷积神经网络因其强大的建模能力引起广泛关注,在自然语言处理、图像识别等领域成功应用。然而,传统的卷积神经网络只能处理欧氏空间数据,而现实生活中的许多场景,如交通网络、社交网络、引用网络等,都是以图数据的形式存在。将卷积神经网络迁移到图数据分析处理中的核心在于图卷积算子的构建和图池化算子的构建。本文对图卷积神经网络进行综述,首先介绍了图卷积神经网络的背景并梳理了两类经典方法——谱方法和空间方法,图数据上平移不变性的缺失给图卷积算子的定义带来困难,谱方法借助卷积定理在谱域定义图卷积,而空间方法通过在节点域定义节点相关性来实现图卷积;进而,本文介绍了图卷积神经网络的最新进展,这其中包括如何利用图卷积神经网络建模图上的复杂信息,如异质连接、高阶连接等,以及如何在大规模图上实现图卷积神经网络;此外,本文介绍了图卷积神经网络的相关应用,包括推荐系统领域,交通预测领域等;最后本文对图卷积神经网络的发展趋势进行了总结和展望。

成为VIP会员查看完整内容
190

相关内容

图神经网络 (GNN) 是一种连接模型,它通过图的节点之间的消息传递来捕捉图的依赖关系。与标准神经网络不同的是,图神经网络保留了一种状态,可以表示来自其邻域的具有任意深度的信息。近年来,图神经网络(GNN)在社交网络、知识图、推荐系统、问答系统甚至生命科学等各个领域得到了越来越广泛的应用。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《多任务学习》综述,39页pdf
专知会员服务
265+阅读 · 2020年7月10日
最新《动态网络嵌入》综述论文,25页pdf
专知会员服务
137+阅读 · 2020年6月17日
最新《深度多模态数据分析》综述论文,26页pdf
专知会员服务
299+阅读 · 2020年6月16日
卷积神经网络的概述论文:分析、应用和展望,21页pdf
专知会员服务
91+阅读 · 2020年4月7日
图神经网络表达能力的研究综述,41页pdf
专知会员服务
170+阅读 · 2020年3月10日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
【中科院计算所】图卷积神经网络及其应用
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
图数据表示学习综述论文
专知
52+阅读 · 2019年6月10日
清华大学图神经网络综述:模型与应用
机器之心
74+阅读 · 2018年12月26日
图神经网络综述:模型与应用
PaperWeekly
197+阅读 · 2018年12月26日
专栏 | 浅析图卷积神经网络
机器之心
28+阅读 · 2018年7月4日
VIP会员
相关VIP内容
相关资讯
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
【中科院计算所】图卷积神经网络及其应用
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
图数据表示学习综述论文
专知
52+阅读 · 2019年6月10日
清华大学图神经网络综述:模型与应用
机器之心
74+阅读 · 2018年12月26日
图神经网络综述:模型与应用
PaperWeekly
197+阅读 · 2018年12月26日
专栏 | 浅析图卷积神经网络
机器之心
28+阅读 · 2018年7月4日
微信扫码咨询专知VIP会员