【WWW2021】面向时空图预测的神经结构搜索

2021 年 4 月 23 日 专知


时空图是描述城市感知数据(如交通速度和空气质量)的重要结构。基于时空图的预测为智慧城市提供了许多重要的应用,如交通管理和环境分析。近年来,已有许多用于时空图预测的深度学习模型被提出,并取得了显著的效果。然而,设计神经网络需要丰富的领域知识和专家的努力。为此,我们研究了时空图的自动神经结构搜索在城市交通预测中的应用,面临两个挑战:1)如何定义搜索空间来捕获复杂的时空关联;2)如何学习一个时空图对应的属性图的网络权值参数。为了解决这些挑战,我们提出了一个新的框架,名为AutoSTG,用于自动时空图预测。在我们的AutoSTG中,我们的搜索空间采用了空间图卷积和时间卷积操作来捕获复杂的时空相关性。此外,我们利用元学习技术从属性图的元知识中学习空间图卷积层的邻接矩阵和时间卷积层的核。具体地说,这种元知识是由一个图元知识学习器来学习的,这个图元知识学习器在属性图上迭代地聚集知识。最后,在两个真实的基准数据集上进行了广泛的实验,证明AutoSTG可以找到有效的网络架构并取得最先进的结果。据我们所知,我们是第一个研究神经结构搜索的时空图。



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“ASTG” 就可以获取【WWW2021】面向时空图预测的神经结构搜索》专知下载链接

专知,专业可信的人工智能知识分发 ,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!


欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

专知会员服务
55+阅读 · 2021年5月17日
【WWW2021】 大规模组合K推荐
专知会员服务
43+阅读 · 2021年5月3日
专知会员服务
32+阅读 · 2021年4月6日
【清华大学】图神经网络交通流预测综述论文,19页pdf
专知会员服务
42+阅读 · 2021年1月29日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
53+阅读 · 2021年1月29日
专知会员服务
108+阅读 · 2020年12月22日
【KDD2020】动态知识图谱的多事件预测
专知
88+阅读 · 2020年8月31日
最新《动态网络嵌入》综述论文,25页pdf
专知
34+阅读 · 2020年6月17日
Arxiv
35+阅读 · 2021年1月27日
A Comprehensive Survey on Graph Neural Networks
Arxiv
13+阅读 · 2019年3月10日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关VIP内容
专知会员服务
55+阅读 · 2021年5月17日
【WWW2021】 大规模组合K推荐
专知会员服务
43+阅读 · 2021年5月3日
专知会员服务
32+阅读 · 2021年4月6日
【清华大学】图神经网络交通流预测综述论文,19页pdf
专知会员服务
42+阅读 · 2021年1月29日
【WWW2021】多视角图对比学习的药物药物交互预测
专知会员服务
53+阅读 · 2021年1月29日
专知会员服务
108+阅读 · 2020年12月22日
Top
微信扫码咨询专知VIP会员