项目名称: 酶促自由基聚合制备纳米复合凝胶的研究及生物应用

项目编号: No.51473123

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 王启刚

作者单位: 同济大学

项目金额: 83万元

中文摘要: 有机无机纳米复合凝胶因高的强度拓展了在材料领域,特别是生物材料相关领域的应用。相对于其它引发途径,酶促自由基聚合具有反应条件温和、高效、低能耗、操作简便的特点。本课题将酶促自由基聚合的方法应用到纳米复合凝胶的温和制备研究中。研究的基础是筛选氧化还原酶和底物分子的反应体系来产生自由基并验证它的单体引发能力。接下来的工作是将底物分子修饰到生物相容性的无机纳米颗粒表面来构建无机引发点。最终的工作是应用氧化还原酶来催化无机表面的底物产生自由基,进而引发单体在无机颗粒表面聚合并最后三维交联无机组分制备复合凝胶。本研究中修饰后的无机纳米颗粒作为成胶的引发点和交联点能有效赋予复合凝胶高的强度。生物酶分子在催化自由基聚合后被负载在复合凝胶中依然保持一定的生物性能。因此集成上述力学和生物性能于一体的复合凝胶可望应用为组织工程和生物电极等领域。

中文关键词: 水凝胶;有机无机复合;酶催化;生物医学材料;生物传感器

英文摘要: The organic-inorganic nanocomposite hydrogels expand the application of hydrogels in materials, especially as biomaterials. Enzyme catalyzed free radical polymerization is advantageous over other polymerization mathods due to its mild reaction condition, high efficiency, low energy consumption and facile operation . Our project applys the enzymatic polymerization to the mild preparation of nanocomposite hydrogels. Firstly, serveral oxidordeuctases/substrates reaction systems are screened by the formation of free radical and the initiation of polymerization with monomer. Secondly, the biocompatible inorganic nanoparticles are modified by the substrates to form the inorgnaic initiator. At last, the reaction between oxidordeuctases and inorgnaic initiator can form radical on the surface of nanoparticles, which initiate the polymerization of monomers from the surface and the crosslinking between organic and inorganic components to form three dimensional nanocomposite gel. In this research, the modified inorganic nanoparticles act as both the initiator and the crosslinking point, which endow the gel with high mechanical property. The enzyme immobilized into the gel can remain its biological properties. Integrated with strength and bioactive enzyme, this kind of soft-wet hydrogel platform can be applied in tissue engineering and hydrogel-immobilized enzyme electrode.

英文关键词: Hydrogel;Organic-inorganic composite;Enzyme catalysis;Biomedical material;Biosensors

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
69+阅读 · 2021年3月12日
深度学习模型终端环境自适应方法研究
专知会员服务
33+阅读 · 2020年11月13日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
56+阅读 · 2021年5月3日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
69+阅读 · 2021年3月12日
深度学习模型终端环境自适应方法研究
专知会员服务
33+阅读 · 2020年11月13日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
19+阅读 · 2020年11月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
微信扫码咨询专知VIP会员