项目名称: 基于活性光接枝化学的聚合物基三维蛋白质芯片设计制备及其性能研究

项目编号: No.51473015

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 赵长稳

作者单位: 北京化工大学

项目金额: 84万元

中文摘要: 蛋白质芯片在临床诊断、新药筛选、个体化医疗及蛋白质组学等领域有广阔的应用前景。基材表面物理化学特性是影响蛋白质芯片检测灵敏度的重要因素,本课题拟以聚合物材料代替传统玻璃基材,通过活性光接枝技术,在其表面先接枝具有抗蛋白质非特异性吸附的功能聚合物,再二次接枝具有交联结构的三维微阵列以固定蛋白,由此制备能够高密度固定蛋白且背景信号低的高灵敏度蛋白质芯片。研究活性光接枝法改性聚合物基材的特点和规律,在此基础上调整三维微阵列的物理特性、化学结构及蛋白质固定方式,探索能够实现高蛋白固定量、高蛋白活性保持率和低背景信号的表面改性新策略,为研发高灵敏度聚合物基蛋白质芯片提供新思路。

中文关键词: 生物芯片;表面改性;水凝胶;功能高分子材料;医用高分子材料

英文摘要: Protein biochips have great potential applications in the fields of disease detection and diagnosis, drug discovery, personalized medicine and proteomics. Surface properties of substrates are crucial parameters determining sensitivity of protein chips. In our study, polymers were chose as substrate instead of widely used glass. Functional polymer brushes with excellent resistant to non-specific protein absorption property were firstly introduced onto substrate via living photograft polymerization. Then three dimensional (3D) cross-linked microarrays were further fabricated on the first polymer brush layer by secondary graft polymerization to covalently immobilize proteins. This elaborate design aims to achieve followed results: antifouling background surface could significantly reduce the background fluorescence intensity, and the 3D protein microarrays exhibited higher signal fluorescence intensity due to higher protein immobilization density. We will explore the characteristics of photograft polymerization on polymer substrates associated with our design. On this basis we will further tune the physical and chemical properties of 3D microarrays and methods for protein immobilization, finally developing a new strategy of surface modification to realize high protein binding capacity, high biological activity preservation and low background signal for protein biochip. This research will open up new avenues to develop high sensitive polymer-based protein biochips.

英文关键词: biochip;surface modification;hydrogel;functional polymer material;biomedical polymer

成为VIP会员查看完整内容
0

相关内容

几何深度学习分子表示综述
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
DeepMind《AlphaFold2蛋白质结构预测》CASP14介绍报告,42页ppt
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
中国工业机器视觉产业发展白皮书,31页pdf
专知会员服务
102+阅读 · 2020年11月14日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关VIP内容
几何深度学习分子表示综述
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
33+阅读 · 2021年5月7日
DeepMind《AlphaFold2蛋白质结构预测》CASP14介绍报告,42页ppt
小目标检测技术研究综述
专知会员服务
122+阅读 · 2020年12月7日
中国工业机器视觉产业发展白皮书,31页pdf
专知会员服务
102+阅读 · 2020年11月14日
【学科交叉】抗生素发现的深度学习方法
专知会员服务
25+阅读 · 2020年2月23日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员