Entity matching (EM) identifies data records that refer to the same real-world entity. Despite the effort in the past years to improve the performance in EM, the existing methods still require a huge amount of labeled data in each domain during the training phase. These methods treat each domain individually, and capture the specific signals for each dataset in EM, and this leads to overfitting on just one dataset. The knowledge that is learned from one dataset is not utilized to better understand the EM task in order to make predictions on the unseen datasets with fewer labeled samples. In this paper, we propose a new domain adaptation-based method that transfers the task knowledge from multiple source domains to a target domain. Our method presents a new setting for EM where the objective is to capture the task-specific knowledge from pretraining our model using multiple source domains, then testing our model on a target domain. We study the zero-shot learning case on the target domain, and demonstrate that our method learns the EM task and transfers knowledge to the target domain. We extensively study fine-tuning our model on the target dataset from multiple domains, and demonstrate that our model generalizes better than state-of-the-art methods in EM.
翻译:实体匹配( EM) 确定指同一真实世界实体的数据记录。 尽管过去几年来努力改进EM的绩效, 现有方法仍要求每个领域在培训阶段提供大量标签数据。 这些方法逐个处理每个领域, 并捕捉每个EM数据集的具体信号, 这导致仅仅在一个数据集上过度匹配。 从一个数据集中获取的知识没有被用来更好地理解EM任务, 以便用较少标签样本对未知数据集作出预测。 在本文中, 我们提出了一种新的基于领域适应的方法, 将任务知识从多个源域转移到目标域。 我们的方法为EM提供了一个新的设置, 目的是利用多个源域对模型进行预培训, 获取具体任务知识, 然后在目标域测试我们的模型。 我们研究目标域的零光学习案例, 并证明我们的方法学习了EM任务, 并将知识转移到目标域。 我们广泛研究了从多个来源域对我们的目标数据集模型进行微调的模型, 并展示了我们的模型在多域域中比状态方法要好。