项目名称: 基于噻吩[3,4-c]并吡咯烷二酮新型受体的制备及其给体-受体共轭聚合物光伏性能研究

项目编号: No.61204020

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 王洪宇

作者单位: 上海大学

项目金额: 30万元

中文摘要: 噻吩[3,4-c]并吡咯烷二酮(TPD)是一类新型高效的受体材料,其在D-A共轭聚合物和新型光伏材料中的应用正成为研究的热点。但是其电子云分布在酰亚胺的氮原子处存在节点,目前针对酰亚胺上的侧基的结构优化都不能实现对TPD受体的共轭性和吸电子性能的调节。本项目利用氨基(NH2)与羰基(C=O)反应生成亚胺(imine)的特性,采用二氨基化合物与3,4-噻吩二甲酸酐环化生成噻吩咪唑或噻吩嘧啶芳香杂环,首次调节TPD受体的共轭结构和吸电子性能;制备基于该新型受体的D-A共轭聚合物,通过调节给体和受体来优化D-A共轭聚合物的吸收特性和能级结构;并进一步在给体侧基上引入共轭基团增强D-A共轭聚合物在短波区的吸收,通过优化给体、TPD 受体和侧基实现D-A 共轭聚合物的吸收和能级结构最优化。本研究有益于揭示D-A结构对能级调控的规律,阐明分子内能量传递和电子转移过程,为新型光伏材料的结构设计提供基础。

中文关键词: 噻吩[3;4-c]并吡咯烷二酮;吡咯并吡咯二酮;炔键;给体-受体;聚集态形貌

英文摘要: Thieno[3,4-c]pyrrole-4,6-dione (TPD) derivatives have attracted a lot of attention since they can lead to high-power conversion efficiencies when used as acceptors in donor-acceptor conjugated polymers in organic solar cells. However, the substituents at the imide position of TPD usually exhibit negligible affect on conjugation and electron-withdrawing capability because nodes in the HOMO and LUMO at the imide nitrogen reduce the coupling between the TPD unit and the imide substituents to a minimum. Herein we utilize the reaction of amino (NH2) and carbonyl (C=O) to generate imine. This project contains following three issues: (1) Fusing five-membered ring "imidazole" or six-membered ring "pyrimidine" to imide position of TPD. The conjugation and electron-withdrawing capability of TPD could be effectively tuned by changing fused aromatic heterocyclic compounds. (2) Synthesizing the D-A conjugated polymers based on modified TPD-based acceptors. The band gaps and HOMO and LUMO energy levels of the resulting D-A conjugated polymers could be tuned by donors and acceptors. (3) Increasing absorption of the D-A conjugated polymers in short wavelength region by introducing the conjugated substituents to side chains. In a word, we will optimize donors, TPD acceptors and side chains to tune the absorption and molecular en

英文关键词: thieno[3;4-c]pyrrole-4;6-dione;diketopyrrolopyrrole;ethynylene;donor-acceptor;aggregation morphology

成为VIP会员查看完整内容
0

相关内容

专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
16+阅读 · 2021年8月4日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
52+阅读 · 2021年3月22日
【南京大学冯雯博士论文】新型深度学习模型的研究
专知会员服务
67+阅读 · 2020年12月5日
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
83+阅读 · 2020年6月9日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
使用深度学习,通过一个片段修饰进行分子优化
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月26日
Arxiv
38+阅读 · 2020年12月2日
小贴士
相关VIP内容
专知会员服务
19+阅读 · 2021年9月14日
专知会员服务
16+阅读 · 2021年8月4日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
52+阅读 · 2021年3月22日
【南京大学冯雯博士论文】新型深度学习模型的研究
专知会员服务
67+阅读 · 2020年12月5日
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
83+阅读 · 2020年6月9日
微信扫码咨询专知VIP会员