项目名称: 含高渗透并网变流器的电力系统小干扰稳定虚拟建模与在线评估方法研究
项目编号: No.51507028
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 电工技术
项目作者: 杨德友
作者单位: 东北电力大学
项目金额: 21万元
中文摘要: 高渗透率新能源经并网变流器柔性并网将改变现代电网的结构形态、运行特性及控制方式,形成新一代含高渗透并网变流器的复杂电力系统。针对新能源电源的随机性和不确定性给电网遭受小扰动概率增加,以及由并网变流器动态特性、控制方式多样性而导致的电网建模困难,模型阶数几何级增长的问题,本项目以智能电网环境下的动态数据量测系统为平台,拟利用随机小激励(新能源有功输出随机波动、负荷随机波动)下的响应数据,在深入研究多运行场景和多控制模式下高渗透并网变流器电网动态特征的基础上,采用数据驱动建模理论研究电力系统反映射虚拟建模方法,重点研究基于系统虚拟模型的小干扰稳定量化评估指标体系,提出随机响应驱动的关键发、输电环节小干扰稳定极限估计方法,实现基于随机响应的高渗透并网变流器电力系统小干扰稳定性在线评估。项目的研究将在电力系统小干扰稳定建模及在线量化估计方面形成鲜明特色与创新,具有重要的科学价值与实践意义。
中文关键词: 并网变流器;随机响应;小干扰稳定;虚拟建模;量化评估
英文摘要: The new-generation power system with high grid-connected converter penetration will be formed as the increasing penetration level of converter control-based renewable generators. The high penetration of renewable energy increases the risk of power system signal stability, and the models of the new-generation power system will be constructed difficultly because of the complex dynamic characteristics and control mode of grid-connected converter. In accordance with these situations, this project plans to study the virtual modeling approach for small signal stability of power system with significant grid-connected converter penetration using the stochastic responses data measured by using wide area measurement system in smart grid firstly. Then the quantitative evaluation index for small signal stability online assessment would be proposed via the constructed virtual model. The prediction method for small signal stability limit of the key link of the electricity transmission system would be investigated based on the system identification. It will achieve the ultimate goal of online quantitative assessment for small signal stability power system with significant grid-connected converter penetration. This project will bring some new ideas into the traditional theories of small signal stability. The researches of this project is of great scientific and practical importance.
英文关键词: Grid-connected Converter;Stochastic Responses ;Small Signal Stability;Virtual Modeling;Online Assessment