项目名称: 云环境下基于Memetic框架的水质传感器大规模优化布置方法研究
项目编号: No.61305087
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 胡成玉
作者单位: 中国地质大学(武汉)
项目金额: 25万元
中文摘要: 近些年,突发性水污染事件频频发生,给社会造成了巨大经济损失,通过在城镇给水管网中布置水质传感器对饮用水实时监测,可有效预警和降低安全风险。大规模给水管网传感器布置优化问题不仅是一个NP-Hard覆盖优化问题,也是一个高维大规模优化问题,目前尚未找覆盖管网全部节点的有效布置优化方法。本项目拟针对大规模给水管网传感器布置优化模型进行研究,建立能监测节点全部污染事件的最少传感器数目及最优布局的优化模型;研究Memetic框架下大规模优化算法,利用专家知识规则对算法的个体局部搜索进行引导,从而使算法具有更快的收敛速度和求解精度;研究云平台下的MapReduce编程模型,并对其适应性修改,提高算法加速比。通过本项目研究,可望在理论上建构求解高维大规模优化问题的基础理论框架及云环境下求解模式,探索Memetic算法基于专家知识规则引导的进化机制;在实践上为市政工程及其它部门提供水质监测点优化选址方案。
中文关键词: 控制理论;优化模型;传感器布置;多种群协同算法;污染源定位
英文摘要: In recent years, water pollution incidents happen frequently, which have caused serious disasters and loss to the society. Through arranging sensors of monitoring water quality for water supply networks to realize the real-time monitoring of drinking water in the municipal water supply network, we can effectively prevent and reduce the safety risk. So the problem of sensor allocation optimization of water supply network is not only a NP-Hard coverage optimization problem, but also a large-scale, high dimensional optimization problem. The optimal sensor placement is very difficult to provide for detecting all of the popution event. Our project aims to consider the sensor optimization placement of the large-scale water supply network. By combining the characteristics of set covering and maximum covering model, we will set up the optimization model of the optimal layout to monitor all pollution incidents with the least sensors. We propose the large-scale optimization algorithm under the framework of memetic, using global search and local search algorithms through knowledge rules guide, so that the algorithm has faster convergence speed and precision. We will study the Map-Reduce programming model under the cloud platform, and modify its adaptability, thus improving the speed ratio of the advanced algorithm. Throug
英文关键词: Control theory;Optimization model;Sensor placemen;Multiple population cooperation algorithm;Contaminant source identification