项目名称: 不可压缩流体问题自适应有限体积算法研究
项目编号: No.11301157
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 张通
作者单位: 河南理工大学
项目金额: 22万元
中文摘要: 如何提高计算效率,用最小的计算代价获得满足精度要求的解一直是计算科学和工程领域的研究热点之一。本课题针对不可压缩流体问题,研究数值逼近中的自适应有限体积算法。在理论分析方面,结合自适应有限元方法理论分析技巧和单元上局部函数的性质,建立定常Stokes及Navier-Stokes方程的有限体积方法后验误差估计。对于非定常问题,考察时间项对自适应方法产生的影响,构造时间或空间重构算子,结合对偶分析技巧,研究时间/空间半离散及时空全离散形式的不可压缩问题自适应有限体积算法。在数值计算方面,我们将设计数值模拟程序,利用建立的后验误差估计子计算逼近解的误差,调整区域剖分的局部网格数,达到用最小计算代价刻画高精度数值解的目的。该项目的研究有助于完善和发展不可压缩问题自适应有限体积算法,并为非线性科学的研究和发展及计算流体力学在工程技术中的应用提供经济的研究途径。
中文关键词: 后验误差估计;自适应算法;不可压缩流体;解耦算法;两层方法
英文摘要: How to improve the computational efficiency, using the minimum computational cost to get a satisfied solution is one of the research hots in computation science and engineering. This project researches the adaptive finite volume method for incompressible fluid problem. On the aspect of theoretical analysis, by applying the techniques established in adaptive finite element method and the properties of local function on each element, we develop an a posteriori error estimates of finite volume method for the steady Stokes and Navier-Stokes equations. For the unsteady problem, consider the effect of time term in the analysis of adaptive method, construct appropriate time or space reconstruction operators, combining with dual arguments, we discuss the adaptive finite volume algorithms for incompressible flow problem in time/space semidiscrete and space-time fully discrete formulations. On the aspect of numerical computations, we will design the program, calculate the errors of numerical solutions by using the established posteriori error estimates, such that we can adjust the local meshes and achieve the purposes of obtaining high precision numerical solutions with minimum computational cost. The investigations of this project contribute to the improvement and development of adaptive finite volume method for the inco
英文关键词: Posteriori error estimates;Adaptive algorithm;Incompressible flow;Decoupled algorithm;Two level method