项目名称: 数据驱动的自适应海洋采样网络协作、认知与控制研究

项目编号: No.61472326

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 自动化技术、计算机技术

项目作者: 王银涛

作者单位: 西北工业大学

项目金额: 83万元

中文摘要: 自适应海洋采样是我国海洋资源开发与走向深蓝进程中一个重要的研究课题。为实现水下移动传感网络的协作数据采样,传感器节点平台-自主水下航行器(AUV)需运动到采样信息最丰富的观测配置上。为此,本项目深入开展以下内容研究:(1)提出一种海洋环境时空数据模型建模与分布式估计方法,实现对温度、盐度、热液羽流等一类采样对象的建模与估计;(2)研究设计一种事件触发的逻辑通讯机制,在各AUV进行局部、间歇性通讯情形下,获得对环境参数的协同感知。(3)从理论上分析观测配置与采样性能之间的关系,同时考虑通讯时延、数据丢包等各类约束,以获得最优采样为目的,建立多AUV协作采样性能评价模型。(4)基于自适应动态规划理论对AUV的航迹进行优化与控制,驱动各AUV保持对采样环境的最优观测。通过本项目的研究,构建一种由采样数据信息驱动的多AUV协作、认知与控制框架,为自适应海洋采样提供新的理论和方法。

中文关键词: 自适应海洋采样;自主水下航行器;数据驱动;协同观测;协同控制

英文摘要: Adaptive ocean sampling is a challenging research topic to China's ocean resources development,exploration and going to deep blue. To meet the goal of designing and proving an effective and reliable underwater mobile sensor network for collecting the richest data set in an uncertain environment given limited resources, the following issues will be considered: (1) The modeling and distiributed estimation algorithm will be proposed to characterize ocean spatio-temporal random fields, under which, the temperature, salinity, hydrothermal plumes and other interest ocean fields could be modeled and estimated. (2) An event-triggered communication logic will be poposed to ensure all the sensor nodes have coordinated cognition for the ocean fields, when the communication between AUVs can only be locally and intermittently.(3) The relationships between the deployment of sensors and sampling performance will be analyzed theoretically,and the corresponding performance metric constrained by communication delays, transmission loss will be proposed to derive the optimal paths for the network of mobile sensors.(4) The paths of AUVs will be optimized and controlled to take measurments of ocean spatio-temporal random fields and collect the richest data sets based on adaptive dynamic programming theory. An expected result of this work is to construct a cooperative,cognitive and control framwork for the multiple AUVs, which can act in response to changing conditions as measured data druing the sampling. We wish the aforementioned researches could present a novel theory and method for adaptive ocean sampling networks.

英文关键词: Adaptive ocean sampling;Autonomous underwater vehicle;Data-driven;Cooperative observation;Cooperative control

成为VIP会员查看完整内容
0

相关内容

【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
专知会员服务
32+阅读 · 2021年9月14日
【硬核书】机器人网络分布式控制
专知会员服务
67+阅读 · 2021年7月25日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
49+阅读 · 2021年3月24日
专知会员服务
51+阅读 · 2020年12月19日
专知会员服务
80+阅读 · 2020年12月18日
清华大学:从单体仿生到群体智能
专知
16+阅读 · 2022年2月9日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
数据驱动的智能运营白皮书,18页pdf
专知
0+阅读 · 2021年3月24日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
10+阅读 · 2020年11月26日
小贴士
相关VIP内容
【博士论文】吉布斯分布的局部、动态与快速采样算法
专知会员服务
28+阅读 · 2021年11月26日
专知会员服务
32+阅读 · 2021年9月14日
【硬核书】机器人网络分布式控制
专知会员服务
67+阅读 · 2021年7月25日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
专知会员服务
64+阅读 · 2021年5月3日
专知会员服务
49+阅读 · 2021年3月24日
专知会员服务
51+阅读 · 2020年12月19日
专知会员服务
80+阅读 · 2020年12月18日
相关资讯
清华大学:从单体仿生到群体智能
专知
16+阅读 · 2022年2月9日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
数据驱动的智能运营白皮书,18页pdf
专知
0+阅读 · 2021年3月24日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
61+阅读 · 2020年7月12日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员