项目名称: 量测缺失确定采样组合导航估计理论研究

项目编号: No.61203234

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 自动化学科

项目作者: 王小旭

作者单位: 西北工业大学

项目金额: 23万元

中文摘要: GNSS/INS组合导航系统是精确制导武器必不可少的关键子系统,其在复杂干扰环境下呈现非线性及量测缺失的耦合问题,而传统的增强GNSS接收机抗干扰技术或额外引入其他导航设备量测信息等硬件解决方案,要么受弹体载荷限制难以实现要么即使实现但存在硬件复杂、成本昂贵、可靠性差、实时性不佳的缺点。为此,本课题通过对量测缺失进行建模的软件方法,首次将GNSS/INS组合导航与定位问题表征为带量测数据缺失的非线性系统估计问题,有望克服传统方法的上述缺点。首先推导高斯意义下带量测缺失的非线性最优估计(滤波和平滑)框架,接着采用UT变换、多项式插值及球面径向规则等采样策略来近似框架中的非线性状态后验分布,进而设计量测缺失下确定采样型次优估计器,最后通过代价函数构造和MIT更新准则,研究参数和采样策略自适应的量测缺失下确定采样型估计与融合算法,为提高精确制导武器导航精度、可靠性及实时性提供理论指导和技术支撑。

中文关键词: 非线性;量测随机缺失;高斯估计;确定采样型估计;期望最大化

英文摘要: GNSS/INS integrated navigation system is the essential and pivotal subsystem in precision-guided weapons, and in the complex and interference environment, it takes on nonlinearity and missing measurement problems, which are coupled with eath other. The traditional hardware solutions for the above problem, including enhanced GNSS reveiver anti-jamming technology or additional introduction of other navigation equipment measurement information, are difficult to be achieved due to the load limits of the missile body, or have shortcomings of hardware complexity, high cost, poor reliability and poor real-time even if the above solutions are implemented. This topic tries to treat the GNSS/INS integrated navigation and position problem as the nonlinear estimation one with missing measurement by measurement equation modeling software approach, which is expected to overcome the above shortcomings in traditional hardware solutions. Firstly, the nonlinear optimal estimation (filtering and smoothing) frameworks with missing measurement are derived in Gaussian sinificance. Then the suboptimal deterministic sampling estimators (filter and smoother) are designed by applying the sampling strategies, including the unscented transformation (UT), the polynomial interpolation and the spherical-radial rule, for approximating the non

英文关键词: Nonlinear;Randomly delayed measurement;Gaussian estimation;Deterministic sampling estimation;Expectation maximization

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
34+阅读 · 2022年1月31日
专知会员服务
38+阅读 · 2021年9月7日
专知会员服务
46+阅读 · 2021年8月28日
专知会员服务
20+阅读 · 2021年8月1日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
84+阅读 · 2020年12月11日
2022 年要考虑的 7 种 Docker 替代方案
InfoQ
0+阅读 · 2022年2月10日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
从最小二乘法到卡尔曼滤波
PaperWeekly
1+阅读 · 2021年12月22日
已删除
将门创投
12+阅读 · 2018年6月25日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
小贴士
相关VIP内容
【AAAI2022】一种基于状态扰动的鲁棒强化学习算法
专知会员服务
34+阅读 · 2022年1月31日
专知会员服务
38+阅读 · 2021年9月7日
专知会员服务
46+阅读 · 2021年8月28日
专知会员服务
20+阅读 · 2021年8月1日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
37+阅读 · 2021年4月25日
专知会员服务
84+阅读 · 2020年12月11日
相关资讯
2022 年要考虑的 7 种 Docker 替代方案
InfoQ
0+阅读 · 2022年2月10日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
从最小二乘法到卡尔曼滤波
PaperWeekly
1+阅读 · 2021年12月22日
已删除
将门创投
12+阅读 · 2018年6月25日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员