项目名称: 深空环境下绳系卫星动力学建模与控制研究

项目编号: No.61304005

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 李传江

作者单位: 哈尔滨工业大学

项目金额: 25万元

中文摘要: 研究深空环境下绳系卫星平台以及平动点附近绳系卫星的动力学与控制器设计问题,并考虑在卫星之间距离较近的情况下,利用库仑力完成多体绳系卫星的形状保持与重构的设计问题。与传统卫星相比,绳系卫星系统具有特殊的优势,比如可通过系绳展开/回收获得可变基线,并可以节省燃料,在未来空间应用上具有巨大的潜力。为解决本领域当前存在的一些突出问题,本课题首先从力学基本原理出发,有针对性地建立几种特殊构型的绳系卫星系统的姿态和轨道物理模型,并进行非线性的动力学分析。在此基础上,采用高精度的平动点数值周期轨道作为目标参考轨道,应用非线性理论和最优控制理论设计绳系卫星系统的轨道保持控制器。进一步应用库伦力代替传统的物理系绳装置连接一组卫星,控制卫星系统的形状、相对速度与位置以完成预定的目标任务。从国内外研究现状来看,该研究不仅具有重要的理论研究价值,还具有广阔的深空应用前景。

中文关键词: 绳系卫星系统;库仑力;限制性三体问题;轨道保持;非线性控制

英文摘要: We address the problem of the dynamic modeling and controller design for tethered satellite system near libration points in deep space environment. Besides, the station-keeping and reconfiguration strategy design for multi-tethered satellite system using Coulomb force are also investigated in the case of relatively short distance among different satellites. Compared with the traditional satellite, the tethered satellite system possesses special advantages, say, for example, the energy saving as well as the variable baseline can be achieved by deploying or retracting the tethers. Therefore, it has tremendous potential in the applications of future space exploration. The libration point orbits are inherently unstable Non-Keplerian orbit, which is very different from low earth orbits. There are a great number of difficulties in dynamic analysis and controller design of tethered satellite system. To solve some key problems in this research field, the attitude and orbit model of some tethered satellite systems with several specific configurations will first be constructed by the application of certain basic principles in mechanics, and then, the nonlinear dynamic analysis will be conducted. Further, we choose the numerical periodic orbits with high precision as nonminal reference orbits. Thus, the station-keeping

英文关键词: Tethered satellite system;Coulomb force;Restricted three-body problem;Station keeping;Nonlinear control

成为VIP会员查看完整内容
0

相关内容

清华大学:从单体仿生到群体智能
专知会员服务
62+阅读 · 2022年2月9日
类脑超大规模深度神经网络系统
专知会员服务
49+阅读 · 2022年1月21日
专知会员服务
51+阅读 · 2021年10月1日
专知会员服务
47+阅读 · 2021年8月4日
专知会员服务
22+阅读 · 2021年4月21日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
127+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2020年11月26日
专知会员服务
73+阅读 · 2020年5月21日
苹果这次哪款新品让你心动了?
ZEALER订阅号
0+阅读 · 2022年3月9日
仅需几天,简约神经网络更快地发现物理定律
机器之心
0+阅读 · 2021年12月25日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(三)
机器人操作的“圣杯问题” -- Bin Picking
机器人学家
14+阅读 · 2018年8月2日
李克强:智能车辆运动控制研究综述
厚势
20+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
29+阅读 · 2020年3月16日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
135+阅读 · 2018年10月8日
小贴士
相关VIP内容
清华大学:从单体仿生到群体智能
专知会员服务
62+阅读 · 2022年2月9日
类脑超大规模深度神经网络系统
专知会员服务
49+阅读 · 2022年1月21日
专知会员服务
51+阅读 · 2021年10月1日
专知会员服务
47+阅读 · 2021年8月4日
专知会员服务
22+阅读 · 2021年4月21日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
127+阅读 · 2021年2月17日
专知会员服务
33+阅读 · 2020年11月26日
专知会员服务
73+阅读 · 2020年5月21日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月17日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
14+阅读 · 2021年8月5日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
29+阅读 · 2020年3月16日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
Arxiv
135+阅读 · 2018年10月8日
微信扫码咨询专知VIP会员