项目名称: 基于多信息局部相关模型的视频标注研究

项目编号: No.61300056

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 自动化技术、计算机技术

项目作者: 李腾

作者单位: 安徽大学

项目金额: 27万元

中文摘要: 现有的视频标注方法普遍受限于训练数据要求、特定识别类型或整体性描述,针对于这些问题,本课题开展基于多信息局部相关模型的视频标注研究。具体研究内容:1)研究对多来源网络数据的领域自动聚类,和跨领域数据的适应识别算法,基于特征线性变换的方法,有效利用来源各异的大数据训练语义概念识别器并应用于目标视频,得到视频的多标签初始标注;2)采用关联图表示和结合视频本身提取的文本和视觉多模态信息,基于图聚类获取视频的初始语义性局部区块及其相互关联;3)研究符合语义特点的基于局部相关模型的多标签标注方法,融合网络跨领域数据信息和视频本身信息,基于上下文相关分解学习算法,并结合初始文字标注信息和底层视觉信息,获取全面准确的、局部性的多标签标注结果。本项目通过以上研究对更多相关信息和更符合语义描述的模型的利用,可望为大量有效的视频标注提供基于局部相关模型的新途径。

中文关键词: 多媒体分析;视频理解;跨源适应;局部相关模型;

英文摘要: Previous video annotation methods are usually limited with requirement for training data, specific annotation types, or global description. Targeting at these problems, this project proposes the multi-domain information based local relevance model for video annotation. Firstly, we conduct research on the domain based clustering algorithm for multi-source internet data, and the cross-domain adaption method for effective recognition. Based on the feature linear transform algorithm, we adapt and employ the multi-domain large data for training for video concepts detection, to yield initial multi-label annotations for the test video. Secondly, the graph based representation is adopted to model the textual and visual information extracted from the test video, based on which the clustering algorithm is researched to obtain the initial semantic local regions of the video and their relevance information. Finally, to integrate the information from online cross-domain data and the test video itself, we propose the local relevance based model, which is semantically more meaningful for multi-label video annotation. Based on the contextual decomposition algorithm, integrating the initial related text and the low level video feature, the test video can be effectively and locally annotated with multi-labels. Through the above m

英文关键词: multimedia analysis;video understanding;cross-domaadaption;local relevance model;

成为VIP会员查看完整内容
0

相关内容

CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
17+阅读 · 2022年4月18日
专知会员服务
17+阅读 · 2021年6月12日
多模态预训练模型简述
专知会员服务
109+阅读 · 2021年4月27日
专知会员服务
69+阅读 · 2021年3月29日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
15+阅读 · 2021年1月19日
专知会员服务
69+阅读 · 2021年1月16日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
专知会员服务
45+阅读 · 2020年10月5日
赛尔笔记 | 多模态预训练模型简述
哈工大SCIR
1+阅读 · 2021年4月27日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
论文盘点:CVPR 2019 - 文本检测专题
PaperWeekly
14+阅读 · 2019年5月31日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
基于图片内容的深度学习图片检索(一)
七月在线实验室
20+阅读 · 2017年10月1日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月18日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
10+阅读 · 2018年4月19日
小贴士
相关VIP内容
CVPR 2022 Oral | 基于熵筛选的半监督三维旋转回归
专知会员服务
17+阅读 · 2022年4月18日
专知会员服务
17+阅读 · 2021年6月12日
多模态预训练模型简述
专知会员服务
109+阅读 · 2021年4月27日
专知会员服务
69+阅读 · 2021年3月29日
【AAAI2021】基于组间语义挖掘的弱监督语义分割
专知会员服务
15+阅读 · 2021年1月19日
专知会员服务
69+阅读 · 2021年1月16日
【NeurIPS 2020】对比学习全局和局部医学图像分割特征
专知会员服务
43+阅读 · 2020年10月20日
专知会员服务
45+阅读 · 2020年10月5日
相关资讯
赛尔笔记 | 多模态预训练模型简述
哈工大SCIR
1+阅读 · 2021年4月27日
图像描述生成研究进展
专知
1+阅读 · 2021年3月29日
论文盘点:CVPR 2019 - 文本检测专题
PaperWeekly
14+阅读 · 2019年5月31日
图像检索研究进展:浅层、深层特征及特征融合
中国计算机学会
122+阅读 · 2018年3月26日
基于图片内容的深度学习图片检索(一)
七月在线实验室
20+阅读 · 2017年10月1日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员