项目名称: 动态系统分段模型及其在视频运动模式挖掘中的应用
项目编号: No.61272330
项目类型: 面上项目
立项/批准年度: 2013
项目学科: 自动化技术、计算机技术
项目作者: 罗冠
作者单位: 中国科学院自动化研究所
项目金额: 80万元
中文摘要: 视频序列中运动模式的检测与挖掘是高层视觉信息分析与理解的一个重要研究内容。本项目围绕人体行为基本运动模式以及基本运动模式分布规律如何挖掘的问题,提出建立一种全新的基于动态系统分段模型的视频人体运动模式挖掘的理论研究框架。基于该研究框架,本项目拟从人体行为基本运动模式的挖掘与描述、基本运动模式数据库的构造与优化、基本运动模式分布规律的学习与挖掘以及复杂人体行为的识别与理解等方面开展一系列创新性的研究工作。在基本运动模式的表达上,通过引入分段模型,将人体运动特征数据序列连续地分割成若干序列片段,并用动态系统对这些序列片段进行描述。在基本运动模式分布规律的表达上,提出一种非参数化的HDP-DSSM模型来描述人体行为的构造规则和主题语义。最后将两者相结合,实现对视频序列中复杂人体行为的识别与理解。
中文关键词: 运动模式;视频挖掘;动态系统;流形空间;Fisher向量
英文摘要: Motion pattern detection and mining in video sequence is currently one of the most active areas of high-level vision analysis and understanding, largely because motion information play an important role in describing the semantic content of video data. In this proposal, a new theoretical research framework is put forward based on dynamical system segment model(DSSM), focusing on how to learn the basic human motion patterns and how these basic patterns fit the human actions. The main content of this proposal covers four parts: (1)how to mine and describe the basic human motion patterns; (2)how to construct and optimize the basic motion pattern dictionary; (3)how to learn the human action model based on the motion patterns; (4)how to recognize and understand complex human behaviors. Our framework shows promise compared with the traditional ones in two aspects. First, we propose describing the action segments by dynamical system, while these segments are learned by using the segment model. Such segments can be noted as Dynamical System Words, which means they are the human motion primitives. By mining the human action database, we can get all the human motion patterns and thus form the motion pattern dictionary, which noted as Dynamical System Dictionary. Second, we propose a non-parametric model HDP-DSSM to descri
英文关键词: motion pattern;video mining;dynamical system;manifold space;Fisher vector