项目名称: 基于器件物理的射频石墨烯场效应管集约模型研究

项目编号: No.61204096

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 常胜

作者单位: 武汉大学

项目金额: 26万元

中文摘要: 石墨烯场效应管(GFET)作为新型纳米电子器件在射频领域有广泛的应用前景。其制备和材料物性分析已火热展开,但对器件的工作机理及可用于电路设计的集约模型的研究尚十分缺乏。 本项目拟从器件物理出发,对射频条件下GFET大信号准弹道工作机理做出理论研究;给出GFET特征参量的解析表达,建立射频集约模型;运用模型预测GFET性能,指导GFET应用电路设计。 创新之处表现为: ①区别于现有的唯象描述,对GFET射频工作机理做出理论解释。通过对大信号条件下的载流子-声子相互作用、高频条件下接触电阻和界面电荷陷阱带来的短沟效应的研究,明晰器件性能与器件尺度间的物理关系。 ② 建立面向电路设计的射频GFET集约模型。不同于硅基器件的飘移扩散理论,以沟道势为核心参量建立量子解析流程;区别于现有的直流模型,建立射频集约模型,有效反映器件高频、大信号下的工作特性;模型与SPICE和ADS兼容,可指导电路设计。

中文关键词: 石墨烯;场效应管;集约模型;神经网络;器件优化

英文摘要: As a novel nano-electronic device, graphene field effect transistors (GFETs) have a brilliant future on RF area. Different with the hot research on GFET's fabrication and material description, work about its operation mechanism is rar, and compact model, which can be directly used on circuit design is still unseen. In this proposal, we will give a phsical explanation about GFETs' quasi ballistic transmit under the high-frequency and big-signal situation at the first. Then, analytical solution of GFETs' character will be deduced and RF compact model will be established. Finally, using this compact model, limits of GFETs' performance will be predicted and RF application circuits will be designed. The innovation of this proposal can be drawn as follow, One is that, different with easy phenomena description, we give a phsical explanation about GFETs'operation mechanism under the high-frequency and big-signal situation. Through the study of carrier-photon interaction under big-signal situation and short channel effect caused by contact resistor and charge trap on interface under high-frequency situation, clarify the physical relation between GFETs' performance and its scale. The other is that establish RF GFET compact model, which is suit for circuit design. Unlike traditional drift-diffuse method of Si device

英文关键词: graphene;field effect transistor;compact model;neural network;device optimization

成为VIP会员查看完整内容
0

相关内容

数字孪生模型构建理论及应用
专知会员服务
211+阅读 · 2022年4月19日
专知会员服务
53+阅读 · 2021年7月30日
专知会员服务
93+阅读 · 2021年6月23日
专知会员服务
40+阅读 · 2021年6月21日
专知会员服务
31+阅读 · 2021年5月7日
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
58+阅读 · 2021年5月3日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
59+阅读 · 2021年3月9日
数字孪生模型构建理论及应用
专知
7+阅读 · 2022年4月20日
聊聊你的春节计划吧~
ZEALER订阅号
0+阅读 · 2022年1月28日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
图像修复研究进展综述
专知
16+阅读 · 2021年3月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月28日
Arxiv
0+阅读 · 2022年4月28日
Arxiv
0+阅读 · 2022年4月27日
Arxiv
0+阅读 · 2022年4月26日
小贴士
相关VIP内容
数字孪生模型构建理论及应用
专知会员服务
211+阅读 · 2022年4月19日
专知会员服务
53+阅读 · 2021年7月30日
专知会员服务
93+阅读 · 2021年6月23日
专知会员服务
40+阅读 · 2021年6月21日
专知会员服务
31+阅读 · 2021年5月7日
一图掌握《可解释人工智能XAI》操作指南
专知会员服务
58+阅读 · 2021年5月3日
专知会员服务
104+阅读 · 2021年4月7日
专知会员服务
59+阅读 · 2021年3月9日
相关资讯
数字孪生模型构建理论及应用
专知
7+阅读 · 2022年4月20日
聊聊你的春节计划吧~
ZEALER订阅号
0+阅读 · 2022年1月28日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
图像修复研究进展综述
专知
16+阅读 · 2021年3月9日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员