Cross-modal encoders for vision-language (VL) tasks are often pretrained with carefully curated vision-language datasets. While these datasets reach an order of 10 million samples, the labor cost is prohibitive to scale further. Conversely, unimodal encoders are pretrained with simpler annotations that are less cost-prohibitive, achieving scales of hundreds of millions to billions. As a result, unimodal encoders have achieved state-of-art (SOTA) on many downstream tasks. However, challenges remain when applying to VL tasks. The pretraining data is not optimal for cross-modal architectures and requires heavy computational resources. In addition, unimodal architectures lack cross-modal interactions that have demonstrated significant benefits for VL tasks. Therefore, how to best leverage pretrained unimodal encoders for VL tasks is still an area of active research. In this work, we propose a method to leverage unimodal vision and text encoders for VL tasks that augment existing VL approaches while conserving computational complexity. Specifically, we propose Multimodal Adaptive Distillation (MAD), which adaptively distills useful knowledge from pretrained encoders to cross-modal VL encoders. Second, to better capture nuanced impacts on VL task performance, we introduce an evaluation protocol that includes Visual Commonsense Reasoning (VCR), Visual Entailment (SNLI-VE), and Visual Question Answering (VQA), across a variety of data constraints and conditions of domain shift. Experiments demonstrate that MAD leads to consistent gains in the low-shot, domain-shifted, and fully-supervised conditions on VCR, SNLI-VE, and VQA, achieving SOTA performance on VCR compared to other single models pretrained with image-text data. Finally, MAD outperforms concurrent works utilizing pretrained vision encoder from CLIP. Code will be made available.


翻译:VL任务跨模式编码器往往先于VIP任务,然后经过仔细整理的视觉语言数据集。虽然这些数据集到达了1,000万个样本的顺序,但劳动力成本却难以进一步扩大。相反,单式编码器先于更简单的说明,其成本要求较低,达到数亿至数十亿的尺度。结果,单式编码器在许多下游任务上达到了最先进的(SOTA) 。然而,在应用VL任务时,挑战依然存在。 预培训数据对于跨模式结构来说并不理想,需要大量计算资源。此外,单式编码器结构缺乏交叉式互动,这些互动对VL任务具有重大效益。因此,如何最好地利用预型编码编码编码编码器,达到数亿至数十亿的尺度。在这项工作中,我们提出了一种方法,在维护计算复杂性的同时,将VLVL任务前的图像和文字编码编码器用于增强现有的VL 。具体地,我们提出了多式的可调制的货币结构结构结构结构,将SNBRR-R-S-S-R-Silver-deal-deal-deal-deal-deal-deal-deal-deal-de-de-de-deal-deal-de-de-de-deal-deal-deal-deal-deal-deal-deal-de-de-de-de-de-de-de-de-de-de-deal-deal-de-deal-develutututisal-de-de-de-deal-deal-de-de-de-de-de-de-demental-deal-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-deal-de-de-de-deal-deal-deal-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-de-

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年4月8日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员