项目名称: 基于场调制的硅烯纳米带自旋器件的设计及电荷输运机理研究

项目编号: No.61504171

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 曹粲

作者单位: 中南大学

项目金额: 20万元

中文摘要: 本项目以硅烯纳米带为研究对象,从第一性原理和电子学的基本原理出发,设计并制造出结构新颖,性能优越的场调制自旋器件。并从两个方面对其展开研究: 1)采用第一性原理计算和非平衡格林函数方法,计算通过各种可行的物理和化学手段调制后的硅烯纳米带场调制器件的自旋输运性质, 深入讨论其内在的自旋传输机理,详细探讨器件中的自旋翻转机理、 自旋极化率以及磁阻现象等。寻找最佳的场调制自旋器件的设计方案。2)在前面的研究基础上,选择合适的改性硅烯纳米带构建场效应晶体管,在第一性原理的计算并结合电子学相关方法下,计算并深入研究不同珊长下场效应管器件的截止频率、漏极电流、 低频跨导等衡量场效应管性能的重要参数。通过理论设计和计算,我们将充分理解场调制硅烯纳米带自旋器件的自旋输运相关的基本物理过程,得到相应的理论模型,并提出性能优越的自旋场效应管器件的设计。

中文关键词: 硅烯纳米带;第一性原理;电荷输运;自旋电子学;场调制自旋器件

英文摘要: Based on the study of the Silicene nanoribbons,We will design a field-effect spin devices with novel structure and high performance by first-principles calculations and the fundamental principle of electronics. And also, we will study of field-effect spin devices as follows: 1) using the first-principle calculation and non-equilibrium Green’s function, we will investigate the spin transport properties of Silicene nanoribbons which have been Chemical or physical modulation, and explore the physical mechanism for the spin transport. The mechanism of spin transition,spin polarization, and magnetoresistance will be discuss in detail. To looking for the best design of field-effect spin devices. 2) based on the suitable Silicene nanoribbons,a field effect transistor will be design, and the most important Performance parameters also be calculate with the gate lenth changed by first-principles calculations and the fundamental principle of electronics. By theoretical design and calculation, we will understand the fundamental physical process deeply for the spintransport in field-effect spin devices, and the corresponding theoretical model will be obtained. Moreover, we will proposed a design scheme for the high performance field effect transistor.

英文关键词: Silicene nanoribbons;First-principles;Charge transport;Spintronics;field-effect spin devices

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
《Golang修养之路》干货书
专知会员服务
33+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
专知会员服务
21+阅读 · 2020年9月14日
创业邦招聘丨2022,一起探索商业“未来式”
创业邦杂志
0+阅读 · 2022年3月4日
DigiTimes:下一代iPhone的芯片将基于“4nm”工艺
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
93+阅读 · 2021年7月3日
《Golang修养之路》干货书
专知会员服务
33+阅读 · 2021年5月8日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【AAAI2021】图卷积网络中的低频和高频信息作用
专知会员服务
58+阅读 · 2021年1月6日
专知会员服务
21+阅读 · 2020年9月14日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员