只需几个小操作,就能让transformer模型推理速度加3.5倍

2021 年 12 月 30 日 机器之心
机器之心报道
编辑:泽南

你在用 PyTorch 写 transformer 吗?请关注下这个项目。


大多数关于在生产中部署 Transformer 类模型的教程都是基于 PyTorch 和 FastAPI 构建的。两者都是很好的工具,但在推理方面的性能不是很好。

而如果你花费时间进行研究,可以在 ONNX Runtime 和 Triton 推理服务器上构建一些更好的东西。与普通 PyTorch 相比,推理速度通常会快 2 到 4 倍。

如果你想要在 GPU 上获得一流的性能,那么只有一种可能的组合:Nvidia TensorRT 和 Triton。与普通 PyTorch 相比,最终可以获得 5 倍的推理速度。有时它甚至能将推理速度提高 10 倍。

然而 TensorRT 并不是以简单易用著称的,对于 Transformer 模型更是如此,它需要使用特定的技巧。


然后,如果你花一些时间,你可以在 ONNX Runtime 和 Triton 推理服务器上构建一些东西。与普通 Pytorch 相比,你的推理速度通常会快 2 到 4 倍。

近日,Hugging Face 发布了一款名为 Infinity 的商业产品,可以以非常高的性能进行推理(与 PyTorch + FastAPI 部署相比,速度非常快)。不幸的是,根据该公司产品总监的说法,即使对于部署在一台机器上的单个模型,这也是一种付费产品,成本为 2 万美元(没有公开的具体规模信息)。

在 GitHub 上有一个项目 Transformer-deploy,它是一种基于企业级软件的开源替代版:

  • 推理服务器:Nvidia Triton(它接受查询,传输给引擎,并添加对推理有用的功能,如动态批处理或多推理引擎调度)

  • 推理引擎:Microsoft ONNX Runtime(用于 CPU 和 GPU 推理)和 Nvidia TensorRT(仅限 GPU)


我们似乎不费吹灰之力,就可以轻松匹敌极少数 HF Infinity 公共基准。

但事实上,现在仍然有机会进一步加快推理性能,AFAIK 尚未被任何其他 OSS 项目利用:对所有 Transformer 模型的 GPU 量化!

如下是对 Roberta-base、seq len 256、batch 32、MNLI 数据集的测试结果:


  • 源代码:https://github.com/ELS-RD/transformer-deploy/blob/main/demo/quantization/quantization_end_to_end.ipynb

  • 项目 GitHub:https://github.com/ELS-RD/transformer-deploy


执行 GPU 量化需要修改模型源代码(在矩阵乘法等代价高昂的操作上添加一些称为 QDQ 的特定节点),这既容易出错,又很枯燥,并且是件自己给自己挖坑的事。对此,项目作者已经为多个模型手动完成了这项工作。在作者看来,只需修补模型模块抽象语法树(也就是源代码)就可以自动完成这项工作。

从用户端看,在 GPU 上执行模型的基本量化看起来就像这样:


如基准测试结果所示,要获得比普通 PyTorch 快 4.5 倍的模型,在 MNLI 数据集上的准确率需要牺牲 0.4 个百分点,这在许多情况下是一个合理的权衡。如果不希望损失准确度,加速也可以降到 3.2 倍左右。当然,实际应用时的 trade-off 取决于模型、数据集等,但它给出了一个基本概念。与该项目的先前版本相比,这是一个很大的改进。

成倍加速的背后,transformer 的源代码被解析为 AST,像 matmul 或 LayerNorm 这样的算子被一个量化器包装,线性层被它们的量化版本替换,一些不支持的 TensorRT 算子被替换等等。然后还有一部分新的源代码替换。

作者表示,他们目前已经成功测试了 ALBERT、BERT(包括 miniLM)、DistilBERT、Roberta(包括 Camembert、XLM-R、DistilRoberta 等)、Electra 的推理。对于任何可以导出为 ONNX 格式的 transformer 模型,它应该都是开箱即用的,或者只需很少的努力。

关于 CPU 的推理、量化非常容易,且也是由 Transformer-deploy 项目支持的。但是在极端情况下,transformer 的性能会变得非常差(如没有批处理、非常短的序列和蒸馏模型时)。另外如使用基于上代英特尔 CPU 的实例,如 C6 或 M6,与像 Nvidia T4 这样的廉价 GPU 相比,在 AWS 上的性价比会很低。

综上所述,在 Transformer 推理上,除非你对慢速推理感到满意并采用小实例,否则并不推荐使用 CPU 推理。

参考链接:https://www.reddit.com/r/MachineLearning/comments/rr17f9/p_45_times_faster_hugging_face_transformer/


© THE END 

转载请联系本公众号获得授权

投稿或寻求报道:content@jiqizhixin.com

登录查看更多
0

相关内容

Transformer是谷歌发表的论文《Attention Is All You Need》提出一种完全基于Attention的翻译架构

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
44+阅读 · 2021年6月1日
专知会员服务
17+阅读 · 2021年4月24日
Transformer模型-深度学习自然语言处理,17页ppt
专知会员服务
103+阅读 · 2020年8月30日
【Contextual Embedding】什么时候上下文嵌入值得使用?
专知会员服务
15+阅读 · 2020年8月2日
专知会员服务
44+阅读 · 2020年3月6日
【Amazon】使用预先训练的Transformer模型进行数据增强
专知会员服务
56+阅读 · 2020年3月6日
ONNXRUNTIME C++ 版本推理部署踩坑记录
极市平台
1+阅读 · 2022年3月29日
Tensorrt踩坑日记 | python、pytorch 转 onnx 推理加速
极市平台
15+阅读 · 2021年12月24日
深度学习模型参数量/计算量和推理速度计算
极市平台
1+阅读 · 2021年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员