项目名称: 光阱中的胶体化学研究

项目编号: No.21271181

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 倪卫海

作者单位: 苏州大学

项目金额: 80万元

中文摘要: 目前现有胶体化学的研究对象一般为集合溶液样品,实验研究受到诸多限制。深入的机理研究往往要求在单个纳米结构基础上进行的系统研究。纳米尺度,可操控性,可选择性,原位实时检测,多功能,集成化,即"芯片实验室"(Lab on a chip)是将来化学实验的发展趋势。为满足这方面的需求,我们提出基于光阱的胶体化学实验方法。光阱俘获的金属纳米结构,自然地处于其高斯光束的局域强光场中,不仅可以进行光致化学变化的研究,还可以结合其表面等离子共振热效应,得到远高于外界的反应温度,加速光阱中的化学过程,从而对胶体化学的一些新现象进行研究。本项目主要开展的研究方向包括:光阱中金纳米结构的氧化和生长;光阱中纳米结构的包覆及核壳结构的形成;光导向的胶体化学反应;光阱中力学、热学、光学的理论计算。研究成果对于纳米结构的合成及制备具有指导作用,对于纳米功能材料和器件的研制具有重要意义。

中文关键词: 光阱;胶体化学;金属纳米结构;表面等离基元;表面活性剂

英文摘要: To date, the research of colloidal chemistry is mostly focused on ensemble samples in solutions, which is suffered from many limitations. In-depth understanding of the mechanism asks for systematic studies on the basis of single particles. The concept of "Lab on a chip" is advanced recently and featured by many important characteristics, such as nanoscale, easy manipulation, selectivity, in-situ measurement, multifunctionality, and integration. In order to meet these requirements, we propose to develop an approach to colloidal chemistry study using the optical trap. Metal nanostructures, when trapped, is located at the center of the Gaussian beam with high power densities, which not only favors the study of the light-induced chemical reactions, but dramatically accelerates chemistry processes in the trap by elevating the temperature of the nanostructures through exciting their localized surface plasmon modes. The elevated temperature will also come up with many new phenomena that worth further investigating. Main topics in this project include oxidation and growth of gold nanostructures in the optical trap; coating of nanostructures and formation of core-shell structures in the optical trap; light-guided chemistry reactions; theoretical study on mechanics, thermal dynamics, and optics in the optical trap. Knowle

英文关键词: Optical trap;Colloidal Chemistry;Metal Nanostructures;Surface Plasmon Resonance;Surfactant

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
25+阅读 · 2021年12月26日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
28+阅读 · 2021年12月3日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
专知会员服务
37+阅读 · 2021年7月17日
【经典书】线性代数元素,197页pdf
专知会员服务
56+阅读 · 2021年3月4日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
49+阅读 · 2019年9月24日
Nat. Mach. Intell. | 分子表征的几何深度学习
专知
0+阅读 · 2021年12月26日
2018广东省计算机视觉及应用研讨会成功举办
CSIG机器视觉专委会
0+阅读 · 2018年9月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
38+阅读 · 2020年3月10日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员