项目名称: 热力耦合方程组的并行多尺度算法
项目编号: No.11301329
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 王辛
作者单位: 上海大学
项目金额: 22万元
中文摘要: 本项目将围绕航空、航天领域的新一代超轻质结构材料- - 点阵结构材料开展耦合热弹性方程组的渐近均匀化理论和多尺度算法研究,这是点阵结构均匀化理论尚未解决的问题之一。点阵结构具有多个结构小参数,几何物理结构剧烈变化,不能用传统的数值方法模拟。本项目将通过积分变换将动力热弹性耦合方程组转化为复参数的稳态耦合方程,利用多尺度渐近展开方法、扩张技术和奇异摄动技术对复参数稳态耦合方程关于周期结构参数和材料壁/杆厚结构参数作渐近分析,从新的角度发展一套点阵结构动力耦合热弹性方程的均匀化理论。这是动力方程的渐近均匀化分析的一种新尝试。基于理论工作的突破,结合先进有限元和数值积分变换技术,构造一套理论上可靠、计算上可行的时间空间并行的多尺度算法。为点阵结构材料热力耦合性能评价、行为模拟研发一套高效的、健壮的并行多尺度计算程序。为其他多场耦合问题的多尺度算法研究提供参考。
中文关键词: 热力耦合;多尺度渐近分析;积分变换;有限元;
英文摘要: This project will focus on the research of homogenization and multiscale algorithms for the dynamic coupled thermoelastcity equation for materials with lattice structure, which are the new generation of super-lightweight structural materials in aviation and space industries. It is one of the unsolved problems in homogenization of lattice structures. It appears several structural parameters in lattice structures and their physical geometry are rapidly oscillating, so they can't be solved by traditional numerical methods. This project will transfer the dynamic coupled thermoelasticity equation to a stationary coupled equation with complex parameters by integral transformation, then analyse the asymptotic behaviour of the steady coupled equation respect to these structural parameters about the period and the thickness of the plate or beam by multiscale asymptotic expansion method, technique of dilatations and singular perturbation method, to develop a new homogenization theory for the dynamic coupled thermoelasticity equation with lattice structures. It is a new method to deal with the asymptotic analysis of dynamic equations. Base on the progress of theoretical research, taking advantage of advanced FEM and numerical integral transformation techniques, it will develop a time-domain parallel multiscale algorithm
英文关键词: coupled thermoelastcity;multiscale analyses;integral transformation;finite element;