项目名称: 仿生爬壁滑翔机器人的构型、步态及滑翔控制方法研究

项目编号: No.51475018

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 机械、仪表工业

项目作者: 王巍

作者单位: 北京航空航天大学

项目金额: 83万元

中文摘要: 项目针对目前小型爬壁机器人爬行速率低、回收困难等问题,以飞蜥、飞鼠等自然界四足爬壁滑翔动物为原型,开展柔性仿生爬壁滑翔机器人研究,探索兼具四足动步态攀爬和肢控翼膜滑翔的多模式运动实现方法:(1)以结构参数-摆动步态的谐振控制作为攀爬运动的设计目标,结合足端微刺附着方式,以减小爬壁机器人的能耗;(2)参考四足滑翔生物运动过程和姿态调整策略,采用波动滑行步态克服失稳,实现定向滑翔控制;(3)采用背向滑翔形式实现由攀爬到滑翔的运动模式转换。该项目将研究小型爬壁滑翔机器人柔性机构的一体化设计方法,构造适应复合功能的多自由腿和基于柔性张紧机构的翼膜,建立机器人爬壁、滑翔的运动控制模型。本项目具有多学科交叉融合的特点,是小型爬壁机器人研究的拓展和延伸,研究成果有望获得一类具有多运动模式的高效爬壁滑翔机器人。

中文关键词: 爬壁机器人;滑翔机器人;柔性机构;仿生设计

英文摘要: To improve the climbing speed and working efficiency of the climbing robot, this project will research and develop a bionic climbing and gliding robot based on the research results of the bionics and aero dynamics. The research work will include developing a compliant mechnism to combine the climbing and gliding functions into one robotic platform, building up multi degree of freedoms legs based on compliant joints and spinule foot, designing a leg and membrane wing compound mechanism, and researching a bionic dynamic climbing gait and rapid directional gliding control method. The results of this project will include a kind of meso scale climbing robot being able to dynamically climb on natural walls as well as freely glide down. A rapid dynamic bionic climbing gait will be ensured by a comprehensive design method, which optimizes the driver, structure and gait to realize a resonance gait. A controllable gliding will be yielded by a multi functional leg and membrane wing driving mechanism. This project will feature in the fusion of multi disciplines, including bionics, complinant mechanism, aero dynamics and climbing robot. That endowes this project with a novel research methodology.

英文关键词: Climbing Robot;Gliding Robot;Compliant Mechanism;Bionic Design

成为VIP会员查看完整内容
0

相关内容

人工智能技术在智能武器装备的研究与应用
专知会员服务
178+阅读 · 2022年4月13日
信息物理融合系统 (CPS)研究综述
专知会员服务
45+阅读 · 2022年3月14日
清华大学:从单体仿生到群体智能
专知会员服务
71+阅读 · 2022年2月9日
专知会员服务
55+阅读 · 2021年9月18日
【硬核书】机器人网络分布式控制
专知会员服务
67+阅读 · 2021年7月25日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
61+阅读 · 2021年4月22日
专知会员服务
135+阅读 · 2021年2月17日
专知会员服务
34+阅读 · 2020年11月26日
清华大学:从单体仿生到群体智能
专知
17+阅读 · 2022年2月9日
改善机器人模仿学习的决断力
TensorFlow
3+阅读 · 2022年1月10日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
自动化所团队提出视触觉传感技术新路线!让机器人拥有更敏锐触觉
中国科学院自动化研究所
3+阅读 · 2021年9月10日
李克强:智能车辆运动控制研究综述
厚势
21+阅读 · 2017年10月17日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月25日
Arxiv
0+阅读 · 2022年4月25日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
小贴士
相关VIP内容
人工智能技术在智能武器装备的研究与应用
专知会员服务
178+阅读 · 2022年4月13日
信息物理融合系统 (CPS)研究综述
专知会员服务
45+阅读 · 2022年3月14日
清华大学:从单体仿生到群体智能
专知会员服务
71+阅读 · 2022年2月9日
专知会员服务
55+阅读 · 2021年9月18日
【硬核书】机器人网络分布式控制
专知会员服务
67+阅读 · 2021年7月25日
专知会员服务
24+阅读 · 2021年6月9日
专知会员服务
61+阅读 · 2021年4月22日
专知会员服务
135+阅读 · 2021年2月17日
专知会员服务
34+阅读 · 2020年11月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员