We construct an explicit family of 3-XOR instances hard for $\Omega(n)$-levels of the Sum-of-Squares (SoS) semi-definite programming hierarchy. Not only is this the first explicit construction to beat brute force search (beyond low-order improvements (Tulsiani 2021, Pratt 2021)), combined with standard gap amplification techniques it also matches the (optimal) hardness of random instances up to imperfect completeness (Grigoriev TCS 2001, Schoenebeck FOCS 2008). Our result is based on a new form of small-set high dimensional expansion (SS-HDX) inspired by recent breakthroughs in locally testable and quantum LDPC codes. Adapting the recent framework of Dinur, Filmus, Harsha, and Tulsiani (ITCS 2021) for SoS lower bounds from the Ramanujan complex to this setting, we show any (bounded-degree) SS-HDX can be transformed into a highly unsatisfiable 3-XOR instance that cannot be refuted by $\Omega(n)$-levels of SoS. We then show Leverrier and Z\'emor's (Arxiv 2022) recent qLDPC construction gives the desired explicit family of bounded-degree SS-HDX. Incidentally, this gives the strongest known form of bi-directional high dimensional expansion to date.
翻译:我们为Sum-Squares(SOS)半半不完全的编程等级,建造了一个直立的3xOR实例系列,在3-XOR(n)美元水平上很难建立。我们的结果基于一种新形式的小规模高维扩展(SS-HDX),这是最近在当地可测试和量式LDPC代码方面的突破所启发的。调整了Dinur、Philipus、Harsha和Tulsiani(ITS 2021)最近框架,使SoS从Ramanujan建筑群的较低界限与这一环境相匹配(最优)随机事件至不完善(最接近的)硬度(Grigoliev TCS,2001年,Schoenebelbeck FCS)。我们展示了任何(最接近的)SS-HDX(SS-HX) 最接近的3-X级扩展(SS-HD) 的新形式,这是由最近当地可测试的和量式LDPC(美元) 直径20(我们无法推翻的R) 直立方格式。