这篇文章主要侧重于人工智能技术在智能武器装备中的研究与应用。描述了人工智能的定义,人工智能技术的 发展以及美国对人工智能的重视。探讨了人工智能在智能武器装备中的关键技术,包括目标定位与识别技术、 自主攻击技术、分布式作战或蜂群作战技术、作战机器人技术等,并进一步阐述了在关键技术中应该突破的技 术性问题。列举了人工智能技术在智能武器装备中的应用实例,对人工智能技术的发展作了总结与展望。

**1. 引言 **

当今时代,国际间的事务深度复杂变化,充满着不确定性和不稳定性。智能武器装备对于一个国家 起着非常重要的作用。随着科技的不断发展,人工智能技术应用于智能武器装备显然成为现代智能武器 装备发展的一种趋势。本文的研究内容主要包括目标定位与识别技术、自主攻击技术、分布式作战或蜂 群作战技术、作战机器人技术。目标定位与识别技术就是利用人工神经网络,仿照生物机理,搭建像人 一样的神经网络,把数据集中的数据输入到神经网络中,通过不断学习和训练取得训练模型,从而实现 对目标的定位与识别。自主攻击技术在本文中主要通过流程图的形式呈现出来,自主攻击的核心技术主 要是通过人工智能技术中的目标定位与识别技术、智能认知系统、智能决策系统、智能路径规划、智能 控制技术,实现对目标的自主攻击。分布式作战或蜂群作战技术中,主要阐述了智能体之间的关系,现 在的分布式或蜂群作战的发展概况以及所存在的不足。探讨了作战机器人应该具备的特点和属性以及研 究作战机器人需要具备的知识,阐述了现阶段作战机器人需要解决的技术问题。

**2. 人工智能定义 **

人工智能就是利用人工的技术手段使得机器更加智能。人工智能这一名称的提出距今已有 60 多年, 2015 年人工智能得到了进一步发展,时至今日,人工智能仍然是一个火热的研究方向之一,人工智能涉 及到生活的方方面面,人脸识别、智能医疗诊断、智能火星探测车等都是利用人工智能技术服务于人类 的实例。人工智能的迅速发展离不开各学科的相互发展。人工智能属于社会科学与自然科学的交叉学科, 具有高度技术性和专业性的特点,涉及到包括数学、神经科学、计算机科学、哲学和认知科学、控制科 学、生物科学等多门学科[1]。人工智能大致包含的学科如图 1 所示。

3. 人工智能技术的发展及美国的重视

人工智能技术的迅速发展,一般认为可以分为 4 个阶段,以数学等为基础的弱人工智能阶段,以运 算与感知为基础的强人工智能阶段,以认知为基础的通用人工智能阶段和超级人工智能阶段[2]。目前世 界各国都高度重视对人工智能技术的研究、开发和应用,但是,现在的人工智能技术仍处在弱人工智能 阶段。人工智能技术的主要发展层次大致分为 3 个层级的智能,包括运算、感知和认知,即机器要具有 高效快速运算的能力,同人类类似或超越人类的记忆和存储信息的能力,同人类的视觉、听觉、触觉相 似的感知能力,像人一样能理解推理、能够知识表达和会思考的认知能力[3]。根据美国、俄罗斯、印度、日本、国际军控和裁军组织,瑞典军事研究所等媒体和组织对 2020 年世 界军事强国的排名,排名第一的仍然是美国。美国作为军事强国之所以保持其军事强国地位离不开强大 的经济实力和尖端的军事科学技术。近年来,随着人工智能技术的迅速发展,引起了以美国为首的现代军事强国高度重视。从 2016 年起至 今,美国对于人工智能技术在军事领域的研究与应用格外重视。2016 年,人工智能技术在全球盛行,也引 起了美国军方的高度关注,美国为了应对各种复杂严峻的军事挑战,提出了第三次“抵消战略”,提出了一 系列优先发展技术的新型作战概念,例如“分布式作战”“蜂群”“作战云”等,美国政府要求优先发展人 工智能技术,推动“智能化导弹”“智能无人机”“无人自主空中加油”等相关人工智能技术在军事方面的 研究与应用。美国的《国防战略》,将先进与智能计算、大数据、自主智能、智能机器人等新型人工智能技 术作为美国在军事领域打赢智能化战争的核心技术。2019 年 11 月 21 日,美国国会在《人工智能与国家安 全》报告中指出,人工智能是一个新兴创新发展的技术,对维护国家安全具有举足轻重的重要意义。2020 年,美国加大人工智能领域投入和布局。2021 年,美国在人工智能相关研发项目上投资超过 60 亿美元。美 国国会已经指示国防部联合人工智能中心在 4 月底之前向国会国防委员会提供一份国防部所有人工智能活 动的清单。这充分表明,美国对人工智能的重视,尤其是在军事领域,美国更加倾注于人工智能技术的发展。

4. 人工智能在智能武器装备中的关键技术

智能武器装备的核心是先进技术,将人工智能技术应用到智能武器中,将大大增强军事战斗力。本 文主要探究了 4 种人工智能技术在智能武器装备中的作用,分别为目标定位与识别技术、自主攻击技术、 分布式作战或蜂群作战技术、作战机器人技术。

4.1. 目标定位与识别技术

作战状态中,以对敌军武器及敌人进行精准打击为目的,这就需要智能武器装备在外部环境干扰的 情况下,采用武器内部的自主定位与识别系统对敌方目标精准定位与识别,人工智能技术中的目标定位 与识别技术显得尤为重要。目前,以卷积神经网络为基础的深度学习、机器学习是各国在目标定位与识 别研究领域之一,它主要解决的是在目标定位与识别中的准确度和效率。基于计算机视觉的低层理论是 卷积神经网络[4]。如图 2、图 3 所示。由图可知,卷积神经网络的运算方式是从一端输入相关的信息数据,经过卷积神经网络的隐藏层, 最后从另一端输出运算模型。例如,通过数据集、YOLO 系列算法等,将处理后的图像数据输入到卷积 神经网络结构,通过优化参数学习率、激活函数、分类函数等参数的优化,进行不断的迭代与训练,提 取数据的特征,从而获得目标定位与识别模型,通过测试程序调用卷积神经网络学习和训练好的模型, 实现对目标的定位与识别功能。在人工智能研究领域,目标定位与识别方面要具有良好的鲁棒性,包括 精准定位、精准识别、运算效率高、中央处理器消耗低、数据集样本量少、无需人为设定参数等,还应 该具有最优的回归函数、损失函数、神经网络的激活函数等。目前,上述技术还需进一步突破。

战时状态下的环境错综复杂,智能武器装备在目标定位与识别中拥有核心算法是不可或缺的条件。 这里分别列举了 2019 年、2020 年、2021 年的人工智能目标定位与识别的高性能算法模型,如表 1 所 示。战时状态下,毫秒必争,敌军的目标处于变动的状态,快速精准锁定目标与实现精准识别打击功能 是现代武器装备作战具备的必要条件,如图 4 所示。图中为陆地作战的场景,智能化的战场,首要任务 是精准定位与识别目标,采用基于人工智能技术的自主定位识别系统,能够快速锁定目标,实现对目标 的精准打击。

4.2. 自主攻击技术

自主攻击技术无需远程人员操控,只是依赖于智能武器装备本身所携带的传感器、计算机、智能芯 片等先进部件,对敌方的信息自动搜索、识别、智能决策、选择与自主攻击。最具代表性的是无人作战 机,使得无人作战机不仅具有隐身的功能,还应具有自行完成起飞、自主攻击,返回与降落等功能,其 中,自主攻击是取得胜利的关键因素。图 5 为自主攻击技术流程图。

上图中,无人作战机主要是通过自主攻击系统实现对目标的自主攻击。自主攻击系统依赖的核心是智能装备中的人工智能技术,它包含目标定位与识别、智能认知与决策、攻击轨迹的生成、智能控制等关键技术。首先,无人作战机获取攻击目标,这一步主要是通过基于深度学习的算法来实现。其次,是对目标的认知和决策,通过智能认知和决策算法对攻击的目标筛查与检测,实现精准攻击目标的目的。无人作战机获得智能认知、决策后,接下来就需要对攻击目标的轨迹进行规划,主要采用的是轨迹路径规划算法。在智能控制部分,主要采用的是智能控制算法,实现多功能、全方位的智能控制,包括武器控制系统、目标定位与识别、攻击轨迹的生成、飞行控制等。上述是实现自主攻击功能的大致流程,但上述的每一部分所采用的技术都还不成熟,还需进一步研究。以下分别就上述技术的简单论述。

4.2.1. 智能认知系统

智能认知系统是人工智能技术之一[23],无人作战机具有智能认知的功能才能够自主攻击目标。认知 计算是建立在神经网络和深度学习的基础之上,基于人工智能和信息科学的技术平台,这些平台包括机 器学习、推理与表达、自然语言处理、计算机视觉、人机交互、定性空间表示等技术,通过运用认知科 学知识构建模拟人类思维过程的系统。智能认知系统离不开认知计算,目前,量子认知计算成为认知计 算发展的一大方向[24]-[29]。量子认知计算是当代量子计算与认知科学相结合的一个新型边缘学科,通过 对认知科学中的现象进行建模,运用量子理论的计算方法,研究与描述人的认知及其决策的交叉科学。量子认知计算通过人的大脑接受外界所获得的数据信息,经过人的大脑的加工处理,通过某种方式转换 成内在的心理活动和心智活动,进而支配人的行为的信息加工过程,应用量子理论的数学形式为语言符 号、人类记忆符号、演绎推理、人类判断逻辑等,以突破传统认知科学的障碍。量子认知计算构架如图 6 所示。

从上图可知,为了实现智能认知,主要有 3 部分组成,以基础学科为依托,通过认知计算算法使得 机器计算能力更强,认知计算更广,与量子科学中的量子算法相结合,从而使得量子认知计算的功能接 近于人类的认知功能。将量子认知计算技术应用到智能武器装备,实现智能武器装备具备认知功能是现 今研究的课题之一。

4.2.2. 智能决策系统

未来战场必将是智能化的战场,智能决策在智能武器装备中起着关键性的作用。智能决策主要分为 3 个层次:人来决策、辅助决策、机器自主决策。人来决策的主体是人,战时状态下,通过远程操控, 由人来做出决策。辅助决策是人通过借助外在智能设备做出科学决策。最理想的状态是机器能够像人一 样的智能甚至超越人的智能做出精准、高效、合理的决策。借助人工智能技术使得机器自主决策是智能 决策研究的重要方向之一。智能决策系统结构如图 7 所示。

从图 7 可以看出,要想实现机器自主决策,机器应当具备方法库、数据库、模型库和知识库 4 个主 要模块。方法库是存储方法模块的系统,有各种为了解决问题的算法组成;数据库是收集数据信息、存 储数据信息和加工处理数据信息的模块系统;模型库存储着各种模型,用于支持决策系统;知识库是对 输入和输出智能系统的信息数据进行编码和解码,包括知识定量和定性的表示,知识表达,知识推理决 策等。4 个主要模块相互作用,从而实现对问题的智能决策。智能决策算法模型是目前研究的重要课题 之一[30]。人工智能技术中,马尔可夫决策算法和决策树算法是典型的代表。

4.3. 分布式作战或蜂群作战技术

分布式作战包括空中分布式作战、陆路分布式作战、海上分布式杀伤、水下分布式作战、空间分布 式结构等,蜂群作战是一种仿照生物作战的结构体系,如图 9 所示。图 9 作为一个分布式作战体系结构,由一个指挥中心控制多个智能体,这里用智能体 1、2、3、4、 5 表示。每一个或多个智能体与指挥中心之间、多个智能体之间相互关联,协同作战,包括自主攻击、 智能规避威胁、信息数据高速传输与共享等,形成一个乱中有序的蜂群作战模式。作战状态下,智能武器装备之间不仅可以协调配合,还可以协同配合,通过自主协同、群体智能技 术提高作战能力,具有灵活性强,对抗性强的特点。目前,分布式作战或蜂群作战应该在以下方面还需 取得进一步研究。一是战场信息化网络技术。由单一智能体转为多智能体,智能体之间需要由协调转为协同,在特定 战场中,依赖于智能网络组成的作战体系,要求智能体之间的数据传输极强,实时性极高,能够保证智 能体之间的稳定性、可靠性。二是分布式或蜂群人工智能技术。战时状态下智能体要具有智能定位与识别目标、智能决策、智能控 制、智能协同、智能认知、自组织等作战能力,这就需要在分布式或蜂群人工智能技术方面取得新突破。三是分布式或蜂群协同作战技术。分布式或蜂群作战,每一个子成员都是一个智能体,既能够单独 完成任务,也可以协同自身以外的子成员完成任务,单个或多个智能体之间都具有自主控制、自主决策、 自主认知的能力,这就需要在协同作战技术上取得新突破。四是分布式或蜂群编队控制技术。作战环境中,只有一定的战术策略才能够赢得战场的主动权。分 布式或蜂群之间要具有极高效的控制能力,包括自主控制、障碍回避,自主威胁识别能力,需要在编队 控制技术上取得新进展。

4.4. 作战机器人技术

作战机器人作为未来战争的主力军,是拥有人类智慧的参战者,从作战指挥到协同推进,从物质运 输到侦查勘探以及实战进攻都扮演着重要的角色,必须具备自我认知与推理能力、定量或定性空间表示、 知识表示、智能规划、感知与认知能力等。如图 10 所示。图 10 为作战机器人的概念图,环境为地面作战,要求机器人之间协同配合,精准识别目标,对目标 进行精准打击,这就需要机器人获取外界信息和高效计算的能力,智能控制能力等。除了上述的作战场 景的之外,智能作战无人机、水下智能机器人、空间智能机器人等都可以在复杂不确定的环境下参与作 战。作战机器人技术主要包含以下方面。一是如何赋予机器人人的的智慧或者超越人的智慧。复杂的作战环境下,要求机器人必须要有人的 感知能力、认知能力、创造力,机器人的灵活性和灵敏性必须能够达到人的灵活性和灵敏性,应当具备 群体智能的能力。二是作战机器人自我隐蔽技术。战争状态下,要求作战机器人要具有极强的隐蔽性,动作灵活,特 别是侦查机器人,不能够发出噪声。三是作战机器人超长待机技术。战场中环境复杂多变,机器人必须保证自己的能量不受威胁,长期 作战情况下,机器人要具有获取能量自我补充的能力。四是人工智能芯片技术。作战机器人的智能芯片有待发展,智能芯片作为机器人的核心部分,需要 具备更加完备的能力。将人工智能技术应用到作战机器人已成为该领域研究的一大方向。

5. 人工智能技术在智能武器装备中的应用

人工智能武器应当具有机智的决策、理性的辨别目标能力,具有明辨自然语言的能力,是一种能够 对外部环境具有极强的洞察力、实时应对各种复杂挑战,能认知会思考的武器系统[32]。科技发展至今, 利用人工智能技术的智能武器装备也在不断研制和应用,例如,目前美国的联合全域指挥控制系统 (JADC2)正处在研发阶段,根据五角大楼的最新规划,现代军队总参谋部的每一个组成部分,包括作战计 划、信息采集、情报收集、后勤与保障、通信和决策都将移交给由传感器、计算机和软件、算法和模型 组成的复杂集合体负责。所有这些组成部分随后都会被整合进一个“综合各个系统的系统”。最终,这 种多系统集合体可能会代替人类的职能,甚至超越人类所应承担的职能,以此来代替美军高级将领及其 资深参谋所承担的大部分职能。如图 11 所示。除了 JADC2 外,美军在役或在研的智能化导弹主要有战术战斧、远程反舰导弹(LRASM)、标准-3、 灰狼等,它们都是运用人工智能技术的产物,将人工智能技术应用到导弹中,使得智能导弹具备自主识 别目标和自主攻击的能力。以下是不同的智能化导弹、类型和状态的基本情况,如表 3 所示。在分布式作战和蜂群作战方面,2020 年 9 月,俄罗斯军方采用苏-57 战斗机进行试验,在真实作战 条件下,利用一架苏-57 战斗机作为指挥和控制多架苏-35 战斗机,执行协同攻击任务。美国军方也正在 利用新型 F-35 战斗机进行类似的分布式作战或蜂群作战试验。另外,灰狼巡航导弹试验成功也将具备蜂 群攻击的能力。不过,无论是分布式作战,还是蜂群作战,目前还处于初级试验阶段。其核心是先进的 算法模型和合理的数据以及高效的运算能力,因此还需要不断探究。

类似的,利用人工智能技术在军事中的应用实例还包括在信息化武器装备中的应用[33]、在导弹领域 的应用[34]、导弹控制技术[35]、美军智能武器装备的发展等[36],虽然这些人工智能技术有些已经付诸 实践之中,有些还在研究中,但是总体还不够成熟,需要进一步的研究与技术突破。

成为VIP会员查看完整内容
175

相关内容

人工智能(Artificial Intelligence, AI )是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是计算机科学的一个分支。
深度学习模型鲁棒性研究综述
专知会员服务
91+阅读 · 2022年1月23日
专知会员服务
50+阅读 · 2021年7月18日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
93+阅读 · 2020年10月30日
异质信息网络分析与应用综述,软件学报-北京邮电大学
【中科院自动化所】视觉对抗样本生成技术概述
专知会员服务
35+阅读 · 2020年4月15日
「深度学习模型鲁棒性」最新2022综述
专知
7+阅读 · 2022年1月23日
生物特征识别学科发展报告
专知
1+阅读 · 2021年3月18日
【数字孪生】面向智能制造的数字孪生
产业智能官
50+阅读 · 2020年5月10日
深度学习技术在自动驾驶中的应用
智能交通技术
26+阅读 · 2019年10月27日
【深度学习】深度学习技术发展趋势浅析
产业智能官
11+阅读 · 2019年4月13日
深度学习技术发展趋势浅析
人工智能学家
27+阅读 · 2019年4月11日
【人工智能】180页PPT,讲解人工智能技术与产业发展
【工业互联网】工业互联网与工业大数据分析的应用
产业智能官
12+阅读 · 2017年12月26日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
21+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Pre-Training on Dynamic Graph Neural Networks
Arxiv
1+阅读 · 2022年4月18日
Arxiv
12+阅读 · 2020年12月10日
VIP会员
相关VIP内容
深度学习模型鲁棒性研究综述
专知会员服务
91+阅读 · 2022年1月23日
专知会员服务
50+阅读 · 2021年7月18日
专知会员服务
41+阅读 · 2021年6月2日
专知会员服务
93+阅读 · 2020年10月30日
异质信息网络分析与应用综述,软件学报-北京邮电大学
【中科院自动化所】视觉对抗样本生成技术概述
专知会员服务
35+阅读 · 2020年4月15日
相关资讯
「深度学习模型鲁棒性」最新2022综述
专知
7+阅读 · 2022年1月23日
生物特征识别学科发展报告
专知
1+阅读 · 2021年3月18日
【数字孪生】面向智能制造的数字孪生
产业智能官
50+阅读 · 2020年5月10日
深度学习技术在自动驾驶中的应用
智能交通技术
26+阅读 · 2019年10月27日
【深度学习】深度学习技术发展趋势浅析
产业智能官
11+阅读 · 2019年4月13日
深度学习技术发展趋势浅析
人工智能学家
27+阅读 · 2019年4月11日
【人工智能】180页PPT,讲解人工智能技术与产业发展
【工业互联网】工业互联网与工业大数据分析的应用
产业智能官
12+阅读 · 2017年12月26日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
21+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员