We introduce the notion of an effective Kan fibration, a new mathematical structure that can be used to study simplicial homotopy theory. Our main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. This contrasts with the ordinary, unstructured notion of a Kan fibration. We show that fundamental properties of Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, we give a constructive (explicit) proof showing that effective Kan fibrations are stable under push forward, or fibred exponentials. This is known to be impossible for ordinary Kan fibrations. We further show that effective Kan fibrations are local, or completely determined by their fibres above representables. We also give an (ineffective) proof saying that the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. By showing that the effective Kan fibrations combine all these properties, we solve an open problem in homotopy type theory. In this way our work provides a first step in giving a constructive account of Voevodsky's model of univalent type theory in simplicial sets.
翻译:我们引入了有效的 Kan 纤维化概念, 这是一种新的数学结构, 可以用来研究简单的同质理论。 我们的主要动机是使简单的同质理论适合同质理论。 有效的 Kan 纤维化是具有结构化结构化的装饰器的地图, 配有符合某些非三角特性的精选升升升降机的集成图。 这与普通的、 没有结构化的 Kan 纤维化概念形成对照。 我们显示, Kan 纤维化的基本特性可以扩展到对有效的Kan 纤维化进行明确的构造。 特别是, 我们给出一个建设性( 明确) 的证明, 表明有效的 Kan 纤维化理论在向前推动或纤维性指数下是稳定的。 这对普通的Kan 纤维化机组来说是不可能的。 我们进一步展示有效的Kan 纤维化是本地的, 或者完全由它们上面的纤维决定。 我们还给出一个( 有效的) 证明, 能够装备有效的Kan 纤维化结构结构的模型就是普通的Kan 纤维化结构。 因此, 隐含性地, 两种概念仍然在向前方描述着同性恋理论的路径, 提供一种有效的同质理论的理论。