项目名称: 基于电磁波辅助的10纳米节点CMOS无粘连无倒伏显影技术研究

项目编号: No.61474139

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 李勇滔

作者单位: 中国科学院微电子研究所

项目金额: 90万元

中文摘要: 从2000年的90纳米技术代到2014年的16纳米技术代,半导体极大规模集成电路制造技术在飞速发展。所谓90纳米和16纳米都是指集成电路的线条宽度。在半导体技术发展的过程中,湿法工艺一直以高效率大批量等技术特点在工艺制程中发挥重要作用。然而进入16纳米技术代后,曾推动半导体发展至今的半导体湿法工艺将因水的粘度大无法进入16纳米的线间和孔内进行清洗而退出历史舞台。国际半导体协会早在2005年就提出超临界流体清洗技术,但是高温高压的超临界技术经过近十年的研究也无法和高速率大规模的半导体工艺相结合。本项目课题组通过大功率电磁波照射水消除了水的粘度,从而成功地完成了10纳米CMOS的光刻工艺。10纳米线条的光刻工艺是10纳米CMOS集成电路制造技术中最为关键的工艺,也是10纳米CMOS成套工艺成功的重要标志。该项目研究多种频率的电磁波照射水消除和控制粘度的工艺技术,解决电磁波照射和超临界的相关度。

中文关键词: 电磁波;无粘连;无倒伏;显影

英文摘要: From 90nm technology generation in 2000 to 16nm technology generation in 2014, semiconductor very large scale integrated circuit manufacturing technology development in very high speed. The so-called 90nm and 16nm are means the integrated circuit line width. In the process of the development of semiconductor technology, the wet process has been characterized by high efficiency and low cost technologies play an important role in the process of the manufacturing process. However, after entering the 16nm technology generations, semiconductor wet process which gave impetus to development of semiconductor will exit the stage of history due to the viscosity of the water line and hole cleaning. International Semiconductor Industry Association in 2005 proposed supercritical fluid cleaning technology, but after nearly a decade of research it can not be combined with large-scale and high-speed semiconductor processes because of the high temperature and the pressure of supercritical technology. The research group used the high power electromagnetic wave irradiate water to eliminate the viscosity. And they successfully completed the CMOS 10 nm lithography processes. 10 nm lithography lines process is 10 nm CMOS integrated circuit manufacturing technology is the most critical process, but also an important symbol of 10 nm CMOS process sets success.

英文关键词: electromagnetic wave;no adhesion;no lodging;development

成为VIP会员查看完整内容
0

相关内容

《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
赛迪智库发布2022《安全应急数智化转型白皮书》,37页pdf
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
49+阅读 · 2021年3月24日
医疗知识图谱构建与应用
专知会员服务
384+阅读 · 2019年9月25日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
28+阅读 · 2022年1月13日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关VIP内容
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
赛迪智库发布2022《安全应急数智化转型白皮书》,37页pdf
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
49+阅读 · 2021年3月24日
医疗知识图谱构建与应用
专知会员服务
384+阅读 · 2019年9月25日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
微信扫码咨询专知VIP会员